Ján Buša Michal Hnatič

Verzia 4.6692

Košice 2004

Recenzovali: Doc. Ing. Július Csontó, CSc. RNDr. Milan Stehlík, CSc.

ISBN 80-89061-94-X

Sadzba programom pdfT_EX

Copyright © 2004 Ján Buša a Michal Hnatič

Obsah

Úvod

Syst	émy diferenciálnych rovníc	18
1.1	Lineárne systémy s konštantnými koeficientmi	20
1.2	Stabilita riešení diferenciálnych sústav	28
	1.2.1 Stabilita riešení lineárnych systémov	30
	1.2.2 Stabilita nelineárnych sústav	38
Stav	vové (fázové) priestory a fázové portréty	52
2.1	Fázové portréty jednorozmerných "systémov"	56
2.2	Fázové portréty lineárnych dvojrozmerných sústav	59
2.3	Fázové portréty nelineárnych dvojrozmerných sústav	64
2.4	Niektoré známe diferenciálne rovnice a systémy 2. rádu	69
2.5	Zvláštny (divný) atraktor	73
2.6	Spojité deterministické systémy s chaotickým správaním	76
Bifu	ırkácie	81
3.1	Bifurkácie v jednorozmerných dynamických systémoch	82
	3.1.1 Veta o implicitnej funkcii	86
	3.1.2 Klasifikácia bodov kriviek $f(\mu, x) = 0$	87
	3.1.3 Dvojité singulárne body	90
	Syst 1.1 1.2 Stav 2.1 2.2 2.3 2.4 2.5 2.6 Bifu 3.1	Systémy diferenciálnych rovníc1.1Lineárne systémy s konštantnými koeficientmi1.2Stabilita riešení diferenciálnych sústav1.2.1Stabilita riešení lineárnych systémov1.2.2Stabilita nelineárnych sústav1.2.2Stabilita nelineárnych sústavStavové (fázové) priestory a fázové portréty2.1Fázové portréty jednorozmerných "systémov"2.2Fázové portréty lineárnych dvojrozmerných sústav2.3Fázové portréty nelineárnych dvojrozmerných sústav2.4Niektoré známe diferenciálne rovnice a systémy 2. rádu2.5Zvláštny (divný) atraktor2.6Spojité deterministické systémy s chaotickým správaním3.1Bifurkácie3.1.1Veta o implicitnej funkcii3.1.2Klasifikácia bodov kriviek $f(\mu, x) = 0$ 3.1.3Dvojité singulárne body

	3.2	Bifurk	cácie v dvojrozmerných dynamických systémoch 94	4
4	Mno	ožiny a	zobrazenia 98	8
	4.1	Metric	cké priestory, konvergencia a úplnosť	8
		4.1.1	Hausdorfova metrika a úplnosť priestoru kompakt-	
			ných množín \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 102	7
	4.2	Zobra	zenia)
		4.2.1	Kontraktívne zobrazenia. Banachova veta o pevnom	-
			bode	1
		4.2.2	Afinné zobrazenia	5
		4.2.3	Systémy iterovaných funkcií	9
		1.2.0		
5	Jedr	norozm	erné diskrétne dynamické systémy 123	3
5	Jedr 5.1	n <mark>orozm</mark> Lineár	erné diskrétne dynamické systémy 12 3 rne a po častiach lineárne zobrazenia	3 4
5	Jedr 5.1	t <mark>orozm</mark> Lineár 5.1.1	erné diskrétne dynamické systémy123rne a po častiach lineárne zobrazenia124Lineárne zobrazenia124	3 4 4
5	Jedr 5.1	torozm Lineár 5.1.1 5.1.2	erné diskrétne dynamické systémy123rne a po častiach lineárne zobrazenia124Lineárne zobrazenia124Bernoulliho posun126	3 4 4 5
5	Jedr 5.1	tineán 5.1.1 5.1.2 5.1.3	erné diskrétne dynamické systémy123rne a po častiach lineárne zobrazenia124Lineárne zobrazenia124Bernoulliho posun126Trojuholníkové zobrazenie128	3 4 4 5 8
5	Jedr 5.1 5.2	torozm Lineán 5.1.1 5.1.2 5.1.3 Verhu	erné diskrétne dynamické systémy123rne a po častiach lineárne zobrazenia124Lineárne zobrazenia124Bernoulliho posun126Trojuholníkové zobrazenie128Istov logistický dynamický systém133	3 4 4 5 8 3
5	Jedr 5.1 5.2 5.3	Lineán 5.1.1 5.1.2 5.1.3 Verhu Dvoiit	erné diskrétne dynamické systémy123rne a po častiach lineárne zobrazenia124Lineárne zobrazenia124Bernoulliho posun126Trojuholníkové zobrazenie126Istov logistický dynamický systém133zé singulárne body logistického zobrazenia142	3 4 4 5 8 3 2
5	Jedr 5.1 5.2 5.3 5.4	Lineán 5.1.1 5.1.2 5.1.3 Verhu Dvojit Bifurk	erné diskrétne dynamické systémy123rne a po častiach lineárne zobrazenia124Lineárne zobrazenia124Bernoulliho posun126Trojuholníkové zobrazenie126Istov logistický dynamický systém133zé singulárne body logistického zobrazenia142ácia zdvojenja cvklu145	3 4 5 8 3 2 5
5	Jedr 5.1 5.2 5.3 5.4 5.5	Lineán 5.1.1 5.1.2 5.1.3 Verhu Dvojit Bifurk Unive	erné diskrétne dynamické systémy123rne a po častiach lineárne zobrazenia124Lineárne zobrazenia124Bernoulliho posun126Trojuholníkové zobrazenie126Istov logistický dynamický systém133zé singulárne body logistického zobrazenia142ácia zdvojenia cyklu142trzálne správanje kvadratických zobrazení152	3 4 5 8 3 2 5 2
5	Jedr 5.1 5.2 5.3 5.4 5.5	Lineán 5.1.1 5.1.2 5.1.3 Verhu Dvojit Bifurk Unive 5.5.1	erné diskrétne dynamické systémy123rne a po častiach lineárne zobrazenia124Lineárne zobrazenia124Bernoulliho posun126Trojuholníkové zobrazenie126Istov logistický dynamický systém133zé singulárne body logistického zobrazenia142tácia zdvojenia cyklu142Supercykly154	3 4 5 3 5 5 2 4
5	Jedr 5.1 5.2 5.3 5.4 5.5	Lineán 5.1.1 5.1.2 5.1.3 Verhu Dvojit Bifurk Unive 5.5.1 5 5 2	erné diskrétne dynamické systémy123rne a po častiach lineárne zobrazenia124Lineárne zobrazenia124Bernoulliho posun126Trojuholníkové zobrazenie126Istov logistický dynamický systém133té singulárne body logistického zobrazenia142tácia zdvojenia cyklu142trzálne správanie kvadratických zobrazení152Supercykly154Feigenbaumova univerzalita156	3 4 4 5 8 3 2 5 2 4

6	Frak	tály		159
	6.1	Cantor	ova množina	160
		6.1.1	Existencia Cantorovej množiny	161
		6.1.2	Mohutnosť Cantorovej množiny	162
	6.2	Samopo	odobnosť, fraktálna a iné dimenzie	168
		6.2.1	Fraktálna dimenzia	170
		6.2.2	Topologická dimenzia	176
		6.2.3	Minkovského, bunková (box) a Hausdorfova dimenzia	177
	6.3	Konštru	uovanie fraktálov	186
		6.3.1	Lindenmayerove systémy	187
		6.3.2	Randomizované systémy iterovaných funkcií	192
		6.3.3	Náhodné fraktály	192
	6.4	Oblasti	príťažlivosti iteračných procesov v komplexnej rovine	194
	6.5	Juliove	a Mandelbrotove množiny	195
7	Cha	rakterist	tiky chaosu	204
	7.1	Poincar	rého zobrazenie	204
		7.1.1	Chaos v konzervatívnych systémoch	206
	7.2	Ljapuno	ovov exponent a jeho určovanie	214
		7.2.1	Ljapunovov exponent v prípade jednorozmerného	
		(diskrétneho systému	214
		7.2.2	Ljapunovov exponent v prípade spojitého systému	218
	7.3	Informá	ácia a K-entropia	220
	7.4	Invaria	ntná miera hustoty	220
		7.4.1	Hustota rozdelenia pravdepodobnosti	220

		7.4.2	Diracova delta-funkcia	223
		7.4.3	Hustota iterácií diskrétneho zobrazenia	226
	7.5	Autok	orelačná funkcia	229
	7.6	Výkon	nové spektrum	231
		7.6.1	Súvis výkonového spektra a autokorelačnej funkcie .	235
	7.7	Korela	nčná a fraktálna dimenzia atraktorov	239
		7.7.1	Korelačný súčet a korelačná dimenzia	239
		7.7.2	Metóda časových oneskorení	244
	7.8	Chaos	a zložitosť	249
		7.8.1	Algoritmická zložitosť	249
		7.8.2	LZ-zložitosť a jej meranie	250
	7.9	Arnol	dove zobrazenie — premiešavanie	253
8	Cha	os a šui	m	257
	8.1	Brown	ov pohyb	259
	8.2	Šum v	rádioelektronických prístrojoch	275
		8.2.1	Fyzikálny popis elektrónovej lampy	275
		8.2.2	Odvodenie diferenciálnej rovnice pre pravdepodob-	
			nost'	276
		8.2.3	Metóda generujúcej funkcie	279
		8.2.4	Odvodenie diferenciálnej rovnice pre prúd	281
	8.3	Fokke	rova-Planckova rovnica	282
		8.3.1	Chapmanova-Kolmogorova-Smoluchowského rovnic	<mark>a</mark> 283
				200
		8.3.2	Riešenie Fokkerovej-Planckovej rovnice	288
	8.4	8.3.2 Záver	Kieśenie Fokkerovej-Planckovej rovnice	288 290

9	Prog	ramová príloha	293
	9.1	Rungeho-Kuttova metóda	293
	9.2	Bifurkačný diagram spolu s Ljapunovovym exponentom	297
	9.3	Zobrazenie jednorozmerných iterácií	299
	9.4	Náhodný algoritmus SIF (systému iterovaných funkcií)	301
	9.5	Implementácia turtle-grafiky v <i>L</i> -systémoch	304
	9.6	Znázorňovanie Juliovych množín	310
	9.7	Znázorňovanie výrezov Mandelbrotovej množiny	312
	9.8	Využitie rekurzie na znázornenie Kochovej vločky	314
	9.9	Určenie a znázornenie autokorelačnej funkcie	315
	9.10	Určovanie korelačnej dimenzie nameraného signálu	317
	9.11	Premiešavanie pri Arnoľdovom zobrazení	319
10	Rieš	enia úloh	322
	Použ	titá literatúra	339

Zoznam obrázkov

1	Graf a izolínie funkcie $V(x_1, x_2) = x_1 - \ln(1 + x_1) + x_2^2$	46
2	Fázové portréty rovníc $\dot{x} = 1 - x$ a $\dot{x} = -(1 - x)^2$	57
3	Fázový portrét rovnice $\dot{x} = (x+1)(x-1)^2(x-2)$	58
4	Limitný cyklus príkladu 14	67
5	Fázový portrét matematického kyvadla	72
6	Časové priebehy jednotlivých zložiek a fázová trajektória	
	Lorenzovho systému pri $\sigma = 10$, $r = 25$, $b = 8/3$ a $\mathbf{x}(0) =$	
	$(1,0,30)^T$	75
7	Časové priebehy a fázové trajektórie Duffingovho systému	
	pri $a = 1, b = 0.25, d = 1$ a $\mathbf{x}(0) = (1.1, 0)^T$ pri $c = 0.1$, resp.	
	c = 0.3	78
8	Fázové trajektórie v rovine (U, I) neharmonického oscilátora	
	pri $U_e = 1.5, 1.9, 2.03 \text{ a } 2.2 \dots \dots \dots \dots \dots \dots \dots \dots \dots$	79
9	Fázový portrét rovnice $\dot{x} = (x + \sqrt{1 - \mu^2})(x - \sqrt{1 - \mu^2})$.	84
10	Stacionárne body x_s v závislosti na parametri μ	85
11	Zmena typu stability v extremálnom regulárnom bode	89
12	Možné zmeny typu stability stacionárnych bodov	93
13	Iterácie lineárneho procesu	125
14	Bernoulliho posun a trojuholníkové zobrazenie	128
15	Pevné body viacnásobného trojuholníkového zobrazenia	130
16	Iterácie Bernoulliho a trojuholníkového zobrazenia — $x_0 =$	
	0.3, 0.301 a 0.31	132

Domovská stránka Titulná strana Obsah **∢** •• ► ◀ Strana 8 z 348 Späť Celá strana Zatvoriť Koniec

17	Numerické efekty
18	Logistický iteračný proces
19	Logistický iteračný proces
20	Grafy funkcií $f, f^{[2]}, f^{[3]}$ a $f^{[4]}$ pri hodnotách parametra $r =$
	2.8, 3.0, 3.449 a 3.52
21	Bifurkácie "zdvojenia cyklu" pre polynóm druhého (vľavo)
	a pre polynóm štvrtého stupňa, definovaný v (62) 151
22	Bifurkácie v logistickom zobrazení
23	Cantorove predfraktály
24	Konštrukcia vločky z troch Kochovych kriviek
25	Dvojrozmerná cantorovská množina
26	Prvé predfraktály Sierpińskeho koberca
27	Výsledok použitia <i>L</i> -systému
28	Výsledok použitia náhodného algoritmu SIF
29	Oblasti príťažlivosti koreňov rovnice $z^3 + 1 = 0$
30	Chaotické správanie Newtonovej metódy riešenia rovnice
	$z^4 + 1 = 0 \dots \dots \dots \dots \dots \dots \dots \dots \dots $
31	Zaplnená Juliova množina $K_{-0.194+0.6557i}$
32	Mandelbrotova množina
33	Kyvadlo s pružinou
34	Trajektória $[x(t), y(t)]$ a graf zobrazenia Poincaré (y_{n-1}, y_n)
	v momentoch maximálnej odchýlky premennej <i>x</i> . Prípad
	$y_0 = 0.2 \dots \dots \dots \dots \dots \dots \dots \dots \dots $

35	Trajektória $[x(t), y(t)]$ a graf zobrazenia Poincaré (y_{n-1}, y_n)
	v momentoch maximalitej odchylky premennej x. Pripad $u_0 = -0.04$ 210
36	Trajektória $[x(t), y(t)]$ a graf zobrazenia Poincaré (y_{n-1}, y_n)
	v momentoch maximálnej odchýlky premennej x. Prípad
	$y_0 = -0.075 \ldots 211$
37	Trajektória $[x(t), y(t)]$ a graf zobrazenia Poincaré (y_{n-1}, y_n)
	v momentoch maximálnej odchýlky premennej x. Prípad
	$y_0 = -0.5 \dots \dots \dots \dots \dots \dots \dots \dots \dots $
38	Grafy zobrazenia Poincaré (\dot{y}_n, y_n) v momentoch maximál-
•	nej odchýlky premennej $x \dots $
39	Biturkačný diagram Verhulstovho zobrazenia pre $2.9 \leq r \leq$
10	4, zobrazený spolu s odpovedajúcími exponentmi Ljapunova 217
40	Výkonové spektrum a jeho logaritmus v prípade funkcií zlo-
4.1	žených z dvoch harmonických signálov
41	Výkonové spektrum a jeho logaritmus v případe náhodného
40	a deterministickeho chaotickeho signalu $\dots \dots \dots$
42	Autokorelache funkcie periodických funkcii $x_1(t)$ a $x_2(t)$. 238
43	Autokorelache funkcie nanodneno a deterministickeno cha-
4.4	Uterégie Hénonouho itero mého process (105)
44 45	Závislosť korolačných súčtov od voľkosti s v dvojnásobno
40	Logaritmickoj čkálo pro Hánonov atraktor a tri rôzno druhy
	voktorovoj pormy
	vertorovej normy

46	Závislosť korelačného exponenta od počtu vzoriek N pre $\ \cdot\ _2$	243
47	Závislosť logaritmov korelačných súčtov od logaritmu <i>e</i> pre	
	Lorenzov atraktor	247
48	Závislosť korelačných exponentov Lorenzovho atraktora od	
	dimenzie vnorenia	248
49	Zobrazenie "mačky" pri Arnoľdovej transformácii	255
50	Obraz štvorca na začiatku, po prvej, štvrtej a po pätnástej	
	iterácii Arnoľdovho zobrazenia	256
51	Znázornenie Brownovho pohybu v rovine	260
52	Ilustrácia výslednej sily $\vec{F}(t)$	263
53	Ilustrácia rôznych časových škál	264
54	Silový histogram	266
55	Schématické tvary párnej korelačnej funkcie $f(t)$	268
56	Časové závislosti disperzie polohy a strednej hodnoty druhej	
	mocniny hybnosti brownovskej častice	273
57	Schématické znázornenie prúdu (134) pre $S(t)$ zo vzťahu (146)	277
58	Zmena funkcie hustoty pravdepodobnosti v závislosti od času	291
59	Fázové trajektórie riešení Van der Polovej rovnice	328
60	3 iterácie SIF pre Sierpińskeho trojuholník	333
61	Výkonové spektrá a ich logaritmy pre náhodný a mocninové	
	signály	336
62	Autokorelačné funkcie mocninových funkcií	337
63	Orbita začiatočného bodu $(x_0, y_0) = (\sqrt{3}/3, \sqrt{2}/2)$	338

Motto: Matematik dokáže vyriešiť všetko, čo sa dá, tak ako treba. Inžinier dokáže vyriešiť všetko, čo treba, tak ako sa dá.

Hlavným cieľom vyučovania matematiky je rozvinutie známych rozumových schopností; medzi týmito schopnosťami **intuícia** vôbec nie je najmenej cenná. Vďaka nej ostáva svet matematických obrazov v kontakte s reálnym svetom; a hoci sa čistá matematika dokáže bez nej zaobísť, je vždy potrebná, aby preklenula priepasť, oddeľujúcu symboly od reálneho sveta. K nemu sa bude neustále obracať praktik, a veď na jedného čistého geometra pripadá sto praktikov.

Poincaré, Veda a metóda (POINCARÉ, 1908).

Predslov

Zdá sa, že štúdium chaotického správania sa rôznych deterministických dynamických systémov sa stalo v posledných desaťročiach jednou z dôležitých oblastí vedeckého výskumu. Čím ďalej tým viac sa vyjasňuje, že chaotické správanie nie je niečím zvláštnym – je to typická vlastnosť mnohých systémov. Bolo objavené napríklad v periodicky stimulovanách srdcových bunkách, v elektronických obvodoch, pri vzniku turbulencie v kvapalinách a plynoch, v chemických reakciách, laseroch a pod. (SCHUSTER, 1984).

Preto je zrejme zákonité, že bol predmet "Chaos" zaradený aj do učebných osnov na Fakulte elektrotechniky a informatiky Technickej univerzity

v Košiciach (GAVALCOVÁ, 1999). Na druhej strane bolo dosť náhodné, že jeden z autorov dostal možnosť viesť tento predmet. Treba povedať, že tým nebol nijako nadšený, pretože si od začiatku uvedomoval, že jeho znalosti v tejto oblasti sú značne nesystematické a útržkovité.

Najskôr uvádzame základy teórie systémov diferenciálnych rovníc, ktoré umožnia pochopiť úvodné pojmy jednoduchých spojitých dynamických systémov. Základy teórie iteračných procesov (metrické priestory, konvergencia, Banachova veta o pevnom bode) zasa umožnia študentom pochopiť zvláštnosti iteračných procesov, popisujúcich dynamiku diskrétnych dynamických systémov. Iteračné procesy nás dovedú až ku fraktálom.

Neustále je však treba mať na pamäti, že podávame len stručný a veľmi zjednodušený úvod do menovaných oblastí. Veď napríklad štúdium teórie dynamických systémov by si iste vyžiadalo niekoľkosemestrovú prípravu. Navyše aj tomu by muselo predchádzať štúdium niekoľkých ďalších predmetov. Napriek tomu však veríme, že aj v tejto zjednodušenej verzii budú predkladané poznatky pre študentov užitočné a pomôžu im získať základnú **intuíciu** v tejto zaujímavej oblasti vedeckého poznania. Veríme, že im naša knižka uľahčí štúdium ďalšej literatúry. Mnohé pojmy sú lepšie a presnejšie popísané v knihe (HORÁK, KRLÍN a RAIDL, 2003), o ktorej sme sa dozvedeli až po napísaní tejto knižky. Zvedavý čitateľ tam nájde množstvo zaujímavej informácie.

Chceli by sme sa poďakovať všetkým, ktorí prispeli ku vzniku a súčasnému vzhľadu tejto učebnej pomôcky. Predovšetkých doc. Viktorovi Pirčovi, ktorý navrhol, aby sme nový predmet pripravili. Upozornil nás aj

na niektoré nedostatky v texte. Sme vďační všetkým poslucháčom, ktorí ako prví trpezlivo absolvovali prednášky a cvičenia, ktoré boli často v dosť surovom stave. Z nich najmä Radovan Ondáš pozorne prečítal prvý variant skrípt a upozornil na viaceré chyby. Ďakujeme tiež kolegovi doc. Alexandrovi Haščákovi a zvlášť dr. Ladislavovi Ševčovičovi, ktorý knižku prečítal tradične veľmi pozorne.

Doc. Július Csontó absolvoval hospitácie prakticky na všetkých prednáškach, jeho pripomienky nám spolu so študentmi pomohli mnohé súvislosti lepšie pochopiť. Obzvlášť si ceníme jeho pomoc pri organizovaní cvičení, jeho námety prispeli k tomu, že ich náplň bola praktickejšia aj zaujímavejšia. Sme radi, že sa objavila pekná a zaujímavá knižka "Umelý život" (CSONTÓ a PALKO, 2002) http://alife.tuke.sk, ktorej náplň sa prelína s niektorými časťami tejto učebnice a veríme, že diskusie na hospitáciách aspoň trochu prispeli k jej napísaniu rovnako, ako rady pána docenta prispeli ku skvalitneniu tejto učebnice. Pán doc. Csontó sa spolu s dr. Milanom Stehlíkom podujali napísať recenzie, za čo im patrí naša vďaka i uznanie.

Všetci vyššie menovaní prispeli k tomu, že sa počet chýb rapídne zmenšil. Ak nejaké ostali, odpovednosť za to nesú v plnej miere autori. Prajeme všetkým čitateľom príjemné chvíle strávené s touto knižkou a tešíme sa na kritické pripomienky, ktoré nám môžu zasielať na adresy Jan.Busa@tuke.sk a hnatic@saske.sk.

Košice, apríl 2004

Ján Buša a Michal Hnatič

Ante mare et terras et, quod tegit omnia, caelum Unus erat toto taturae vultus in orbe, Quem dixere Chaos, rudis indigestaque moles Nec quicquam nisi pondus iners congestaque oedem Non bebe iunctarum discordia semina rerum.

Ovídius. Metamorfózy 1,5.

Úvod

Slovo "chaos" pochádza z gréckeho " $\chi \alpha o \zeta$ ". Spočiatku toto slovo označovalo nekonečný priestor, existujúci predtým, ako sa objavilo všetko ostatné. Rimania interpretovali *chaos* ako surovú beztvarú hmotu, do ktorej vniesol Tvorca poriadok a harmóniu. V súčasnosti chápeme chaos najčastejšie ako *stav neporiadku a nepravidelnosti* (SCHUSTER, 1984).

V tejto učebnej pomôcke sa budeme venovať *dynamickým systémom* (spojitým aj diskrétnym (MEDVEĎ, 1988)), ktorých správanie je v čase *deterministické*, teda existuje pravidlo, kroré určuje stav systému v budúcnosti na základe zadaných začiatočných podmienok (začiatočného stavu). Hoci by sa dalo očakávať, že správanie takýchto sústav nebude chaotické, Henri Poincaré už v roku 1882 zistil, že v niektorých mechanických systémoch¹ sa

¹V systémoch, ktorých evolúciu definujú Hamiltonove rovnice.

môže objaviť chaotický pohyb. Tento poznatok ostal dlhú dobu nedocenený, až kým v roku 1963 meteorológ E. N. Lorenz neukázal, že dokonca jednoduchý systém troch diferenciálnych rovníc prvého rádu môže viesť k úplne chaotickým trajektóriám. Rozvoj teórie deterministického chaosu bol priamo stimulovaný problémami na poli fyzikálneho, chemického a biologicko-lekárskeho výskumu (DVOŘÁK a ŠIŠKA, 1991), objavujú sa aplikácie v spoločenských vedách.

Nutnou – ale nie postačujúcou – podmienkou vzniku chaotického správania je *nelinearita* dynamického systému. Chaotické správanie nemusí byť dôsledkom vonkajšieho šumu (napr. Lorenzov systém je autonómny) ani neurčitosti spojených s kvantovou mechanikou. Skutočnou príčinou nepravidelnosti je, že trajektórie niektorých nelineárnych systémov sa od seba exponenciálne rýchlo vzďaľujú – dve trajektórie, ktoré boli v určitom časovom okamžiku "blízke", sa rýchlo rozchádzajú. Ak chceme takéto trajektórie predpovedať na dlhšiu dobu, musíme zvýšiť presnosť zadania vstupných údajov. Dokonca aj taký "jednoduchý a silne deterministický" systém ako je slnečná sústava sa nevyhne deterministickému chaosu (GRY-GAR, 1991). *Výraznú citlivosť na zmeny začiatočných podmienok*, ktorá je jedným z rysov deterministického chaosu, nazval Lorenz *efektom motýľa*, ktorý mávnutím krídel (malá zmena podmienok) spôsobí tornádo (výrazne sa zmení konečný stav).

Hoci pre chaotické dynamické systémy nedokážeme predvídať ich stav po dostatočnom dlhom časovom období, ukazuje sa, že trajektórie sa môžu s časom približovať k podmnožinám, zaberajúcim len malú časť fázového

priestoru, tzv. atraktorom. Tieto, ako napríklad Lorenzov "podivný atraktor", môžu mať *fraktálnu* (samopodobnú) štruktúru, keď pri postupnom zväčšovaní ich zobrazení sa menšie časti "podobajú" na väčšie. Mnohé prírodné objekty majú vlastnosť (približnej) samopodobnosti. Na túto *fraktálnu geometriu prírody* nás upozornil Benoit B. MANDELBROT (1982). Preto sa tiež budeme venovať teoretickým základom fraktálov, fraktálnej dimenzie a ich súvisom s dynamickými systémami.

Data aequatione quotcunque fluentes quantitae involvente fluxiones invenire et vice versa.

Je užitočné riešiť diferenciálne rovnice.

Newton (ARNOĽD, 1978).

1. Systémy diferenciálnych rovníc

Dynamika spojitých dynamických sústav sa popisuje pomocou sústav nelineárnych rovníc, ktoré sa najčastejšie dajú zapísať v tvare normálnych sústav prvého rádu. Nasledujúca kapitola poskytne prehľad základných pojmov a prístupov v tejto oblasti.

Uvažujme nasledujúci normálny systém diferenciálnych rovníc 1. rádu:

$$\frac{dx_1}{dt} = \dot{x}_1 = f_1(t, x_1, x_2, \dots, x_n),
\frac{dx_2}{dt} = \dot{x}_2 = f_2(t, x_1, x_2, \dots, x_n),
\dots \\ \frac{dx_n}{dt} = \dot{x}_n = f_n(t, x_1, x_2, \dots, x_n),$$
(1)

Poznámka 1.1. Bodkou nad *x* budeme označovať deriváciu x(t) podľa *t* – časovú deriváciu.

Tento systém (1) môžeme zapísať vo vektorovom tvare nasledujúcim spôsobom:

$$\dot{\mathbf{x}} = \mathbf{f}(t, \mathbf{x}),\tag{2}$$

kde $\mathbf{x}(t) = (x_1(t), x_2(t), \dots, x_n(t))^T$ je stĺpcový vektor funkcií $x_i(t)$ a vektor $f(t, \mathbf{x}) = (f_1(t, \mathbf{x}), f_2(t, \mathbf{x}), \dots, f_n(t, \mathbf{x}))^T$ je stĺpcový vektor funkcií $f_i(t, \mathbf{x}), i = 1, 2, \dots, n$.

Ďalej budeme predpokladať, že všetky funkcie f_i a aj ich pariálne derivácie podľa premenných x_j sú spojité na nejakej otvorenej množine $\Gamma \subset \mathbb{R}^{n+1}$.

Definícia 1. Riešením sústavy (1) sa nazýva systém (vektor) spojitých funkcií $x_i = \varphi_i(t), i = 1, ..., n$, definovaných na intervale $t_1 < t < t_2$ a vyhovujúcich sústave (1).

Poznámka 1.2. Interval (t_1, t_2) sa nazýva *definičným intervalom riešenia*, možné sú aj $t_1 = -\infty$, resp. $t_2 = \infty$.

Za uvedených podmienok platí nasledujúca veta.

Domovská stránka
Titulná strana
Obsah
• •
Strana 19 z 348
Späť
Celá strana
Zatvoriť
Koniec

Veta (o existencii a jednoznačnosti riešenia). Pre každý bod $(t_0, x_{1_0}, x_{2_0}, \ldots, x_{n_0}) \in \Gamma$ existuje jediné riešenie

$$x_i = \varphi_i(t), \qquad i = 1, \ldots, n,$$

sústavy (1), definované na určitom intervale, obsahujúcom bod t_0 a vyhovujúce podmienkam

$$x_{i_0} = \varphi_i(t_0), \qquad i = 1, \dots, n$$

Dôkaz. Môžete ho nájsť napríklad v knihe (PONTRJAGIN, 1974).

1.1. Lineárne systémy s konštantnými koeficientmi

V tomto oddieli stručne popíšeme postup riešenia najjednoduchších sústav diferenciálnych rovníc, a to sústav lineárnych diferenciálnych rovníc s konštantnými koeficientmi. Podrobnejší popis na elementárnej úrovni môžete nájsť v skriptách (PIRČ, HAŠČÁK a OSTERTAGOVÁ, 2000).

V prípade, ak všetky funkcie f_i v (1) závisia od premenných x_j lineárne,

Domovská stránka
Titulná strana
Obsah
()
• •
Strana 20 z 348
Späť
Celá strana
Zatvoriť
Koniec

zo systému (1) sa stáva lineárny systém diferenciálnych rovníc:

$$\dot{x}_1 = a_{11}(t)x_1 + a_{12}(t)x_2 + \dots + a_{1n}(t)x_n + b_1(t), \dot{x}_2 = a_{21}(t)x_1 + a_{22}(t)x_2 + \dots + a_{2n}(t)x_n + b_2(t),$$
(3)

$$\dot{x}_n = a_{n1}(t)x_1 + a_{n2}(t)x_2 + \cdots + a_{nn}(t)x_n + b_n(t).$$

V prípade, ak navyše koeficienty $a_{ij}(t)$ matice A(t) nezávia od t, hovoríme o systéme s konštantnými koeficientmi:

$$\dot{\boldsymbol{x}} = \boldsymbol{A}\boldsymbol{x} + \boldsymbol{b}(t). \tag{4}$$

Stĺpcový vektor b(t) sa nazýva pravá strana. Všeobecné riešenie (4) sa dá podobne ako v prípade sústavy (3) zapísať v tvare

$$\mathbf{x}(t) = \mathbf{x}_0(t) + \mathbf{x}^*(t),$$
 (5)

kde $x_0(t)$ je všeobecné riešenie systému s nulovou pravou stranou (alebo tiež systému bez pravej strany, resp. homogénneho systému) a $x^*(t)$ je partikulárne riešenie systému s pravou stranou (alebo tiež čiastkové).

Ak budeme hľadať riešenie $\mathbf{x}_0(t)$ v tvare

. . .

$$\mathbf{x}_0(t) = \mathrm{e}^{\lambda t} \boldsymbol{v},\tag{6}$$

dostávame po dosadení z (6) do (4) a vykrátení kladného $e^{\lambda t}$ maticovú rovnicu

$$\lambda v = A \tau$$

alebo

$$(A - \lambda E)v = \mathbf{0},\tag{7}$$

kde *E* je jednotková matica rádu *n*. Dostali sme známy problém určenia vlastných čísel a vlastných vektorov matice *A* (BUČKO, BUŠA a SCHRÖTTER, 2001). Z požiadavky nenulovosti vektora *v* (triviálne riešenie je nezaujímavé) vyplýva, že vlastné čísla λ musia byť riešením charakteristickej rovnice

$$0 = \det(\mathbf{A} - \lambda \mathbf{E}) = (-1)^n \lambda^n + a_{n-1} \lambda^{n-1} + \dots + a_1 \lambda + a_0.$$
(8)

Charakteristická rovnica (8) je algebraická rovnica s reálnymi koeficientmi (v prípade reálnych systémov, ktoré uvažujeme). Má *n* komplexných koreňov, pričom nereálne korene vystupujú vždy ako komplexne združené dvojice. Sú možné rôzne násobnosti koreňov. Každému jednoduchému vlastnému číslu odpovedá vlastný vektor, v prípade komplexných vlastných čísel majú komplexné zložky aj vlastné vektory. V prípade vyššej násobnosti môže byť pre nesymetrické matice potrebné hľadať ďalšie riešenia v tvare

$$\mathbf{x}_0(t) = \mathrm{e}^{\lambda t} \left(t^s \boldsymbol{v}_s + \dots + t \boldsymbol{v}_1 + \boldsymbol{v}_0 \right), \qquad (9)$$

kde *s* je násobnosť vlastného čísla a vektory v_{s-1}, \ldots, v_0 sú tzv. zovšeobecnené vlastné vektory alebo tiež vektory pridružené k vlastnému vektoru v_s . Podrobnejšie informácie nájdete v skriptách (PIRČ, HAŠČÁK a OSTERTA-GOVÁ, 2000).

Príklad 1. Určme všeobecné riešenie lineárnej sústavy diferenciálnych rovníc s konštantnými koeficientmi bez pravej strany:

$$\dot{x}_1 = 2x_1 + 2x_2, \dot{x}_2 = 3x_1 + 3x_2.$$
(10)

Riešenie. Vypíšeme charakteristickú rovnicu $\begin{vmatrix} 2 - \lambda & 2 \\ 3 & 3 - \lambda \end{vmatrix} = 0$ a dostávame

$$\lambda^2 - 5\lambda = 0 \qquad \Rightarrow \qquad \lambda_1 = 0, \ \lambda_2 = 5.$$

Pre $\lambda_1 = 0$ budeme hľadať vlastný vektor v tvare $v_1 = (\alpha_1, \beta_1)^T$. Riešime sústavu rovníc

$$2\alpha_1 + 2\beta_1 = 0,$$

$$3\alpha_1 + 3\beta_1 = 0,$$

čo stručne zapíšeme ako

 $\left[\begin{array}{rrrr} 2 & 2 & 0 \\ 3 & 3 & 0 \end{array}\right].$

Dostávame vlastný vektor $v_1 = (1, -1)^T$. Pre $\lambda_2 = 5$ riešime sústavu rovníc

$$\begin{array}{c|c} -3 & 2 & 0 \\ 3 & -2 & 0 \end{array} \right],$$

odkiaľ dostávame vlastný vektor $\boldsymbol{v}_2 = (2,3)^T$.

Domovská stránka
Titulná strana
Obsah
•• >>
• •
Strana 23 z 348
Späť
Celá strana
Zatvoriť
Koniec

Záver: Vzhľadom na linearitu sústavy (10) je jej všeobecným riešením

$$\mathbf{x}_0(t) = C_1 \begin{bmatrix} 1 \\ -1 \end{bmatrix} + C_2 \begin{bmatrix} 2 \\ 3 \end{bmatrix} e^{5t}$$

kde *C*¹ a *C*² sú ľubovoľné reálne konštanty.

Príklad 2. Určme všeobecné riešenie diferenciálnej rovnice druhého rádu: $\ddot{\theta} + \theta = 0$.

Riešenie. Najprv prepíšeme rovnicu druhého rádu na systém 1. rádu. Použijeme nasledujúci štandardný postup: označíme $\theta(t) = x_1(t)$ a tiež $\dot{\theta} = \dot{x}_1 = x_2(t)$. Potom bude $\dot{x}_2 = \ddot{\theta}$. Dostaneme systém

Vypíšeme charakteristickú rovnicu $\begin{vmatrix} -\lambda & 1 \\ -1 & -\lambda \end{vmatrix} = 0$ a dostávame

$$\lambda^2 + 1 = 0 \qquad \Rightarrow \qquad \lambda_1 = i, \ \lambda_2 = -i.$$

Pre $\lambda_1 = i$ riešime sústavu rovníc

$$\left[\begin{array}{rrr|r} -\mathrm{i} & 1 & 0 \\ -1 & -\mathrm{i} & 0 \end{array}\right]$$

odkiaľ dostávame vlastný vektor $\boldsymbol{v}_1 = (1, i)^T$.

Domovská stránka
Titulná strana
Oberh
•• ••
• •
Strana 24 z 348
Späť
Celá strana
Zatvoriť
Koniec

Pre $\lambda_2 = -i$ riešime sústavu rovníc

$$\left[\begin{array}{cc|c} i & 1 & 0 \\ -1 & i & 0 \end{array}\right],$$

odkiaľ dostávame vlastný vektor $\boldsymbol{v}_2 = (1, -i)^T$.

Úloha 1. Dokážte, že vektor komplexne združený ku vlastnému vektoru, odpovedajúcemu nereálnemu vlastnému číslu reálnej matice, je vlastný vektor, odpovedajúci komplexne združenému vlastnému číslu.

Nie je náhoda, že vlastné vektory sú komplexne združené, rovnako ako vlastné čísla. Ale to ešte nie je všetko. Z dvoch komplexných riešení, ktoré sú tiež komplexne združené, vytvoríme ich lineárnym kombinovaním (našťastie riešime lineárny systém) dve nové reálne riešenia.

Úloha 2. Dokážte, že komplexné združenie riešenia lineárnej sústavy bez pravej strany je tiež riešením.

Teraz sme už pripravení ukončiť riešenie príkladu. Dostávame

$$\mathbf{x}_{1}(t) = \frac{1}{2} \left\{ e^{it} \begin{bmatrix} 1\\i \end{bmatrix} + e^{-it} \begin{bmatrix} 1\\-i \end{bmatrix} \right\} = \begin{bmatrix} \cos t\\-\sin t \end{bmatrix},$$
$$\mathbf{x}_{2}(t) = \frac{1}{2i} \left\{ e^{it} \begin{bmatrix} 1\\i \end{bmatrix} - e^{-it} \begin{bmatrix} 1\\-i \end{bmatrix} \right\} = \begin{bmatrix} \sin t\\\cos t \end{bmatrix}.$$

Záver: Všeobecným riešením sústavy (11) je

$$\mathbf{x}_0(t) = C_1 \begin{bmatrix} \cos t \\ -\sin t \end{bmatrix} + C_2 \begin{bmatrix} \sin t \\ \cos t \end{bmatrix},$$

kde C₁ a C₂ sú ľubovoľné reálne konštanty.

Poznámka 1.3. Všimnime si, že riešeniami sú $\mathbf{x}_1(t) = \operatorname{Re}\left\{\operatorname{e}^{\operatorname{i} t} \left[\begin{array}{c} 1\\ \operatorname{i} \end{array} \right]\right\}$ a $\mathbf{x}_2(t) = \operatorname{Im}\left\{\operatorname{e}^{\operatorname{i} t} \left[\begin{array}{c} 1\\ \operatorname{i} \end{array} \right]\right\}.$

Príklad 3. Určme všeobecné riešenie lineárnej sústavy diferenciálnych rovníc s konštantnými koeficientmi bez pravej strany:

$$\dot{x}_1 = -3x_1 - x_2, \dot{x}_2 = x_1 - x_2.$$
 (12)

Riešenie. Vypíšeme rovnicu $\begin{vmatrix} -3 - \lambda & -1 \\ 1 & -1 - \lambda \end{vmatrix} = 0$ a dostávame

$$\lambda^2 + 4\lambda + 4 = 0 \qquad \Rightarrow \qquad \lambda_{1,2} = -2$$

Pre $\lambda_{1,2} = -2$ riešime sústavu rovníc

$$\left[\begin{array}{rrrr} -1 & -1 & 0 \\ 1 & 1 & 0 \end{array}\right],$$

odkiaľ dostávame vlastný vektor $v_1 = (1, -1)^T$. Keďže koreň je dvojnásobný a získali sme len jeden vlastný vektor, určíme pridružený vektor p_2 k vektoru $v_1 = (1, -1)^T$, ktorý zapíšeme na pravú stranu sústavy. Riešime teda sústavu rovníc

 $\left[\begin{array}{rrr|rrr} -1 & -1 & 1 \\ 1 & 1 & -1 \end{array}\right],$

odkiaľ dostávame pridružený vektor $p_2 = (-1, 0)^T$ (druhú zložku sme zvolili nulovú).

Záver: Všeobecné riešenie sústavy (12) je

$$\mathbf{x}_{0}(t) = \left\{ C_{1} \begin{bmatrix} 1 \\ -1 \end{bmatrix} + C_{2} \left(t \begin{bmatrix} 1 \\ -1 \end{bmatrix} + \begin{bmatrix} -1 \\ 0 \end{bmatrix} \right) \right\} e^{-2t},$$

kde C₁ a C₂ sú ľubovoľné reálne konštanty.

Úloha 3. Dosadením overte, že vektor

$$\mathbf{x}(t) = \left\{ t \begin{bmatrix} 1 \\ -1 \end{bmatrix} + \begin{bmatrix} -1 \\ 0 \end{bmatrix} \right\} e^{-2t}$$
 je riešením sústavy (12).

Poznámka 1.4. V prípade násobných koreňov charakteristickej rovnice môžu nastať rôzne situácie. Napríklad pri trojnásobnom koreni môžu existovať tri nezávislé vlastné vektory, alebo dva nezávislé vlastné vektory a vektor pridružený k jednému z nich, alebo jeden vlastný vektor, ku ktorému je pridružený ďalší vektor, ku ktorému je pridužený ešte jeden vektor. V tomto poslednom prípade vzniknú riešenia tvaru (9), ktoré obsahujú členy *t*, resp. t^2 .

1.2. Stabilita riešení diferenciálnych sústav

Pojem stability zaujíma významné miesto v teórii i aplikáciách diferenciálnych rovníc. Predstavme si nejaké technické zariadenie s dynamikou popisovanou diferenciálnymi rovnicami, ktorého účelom je udržiavať nejakú stavovú premennú v okolí želanej hodnoty (napríklad počet otáčok motora). Predpokladajme, že sa systém nachádza v stacionárnom (nemennom) stave, keď sa uvažovaná stavová premenná nemení. Zmena vonkajších podmienok môže spôsobiť drobnú výchylku tejto premennej od stacionárnej hodnoty. Čo sa bude diať ďalej? V princípe sú možné dva základné režimy: a) "systém sa snaží" uviesť stavovú premennú na pôvodnú hodnotu - hovoríme o asymptotickej stabilite; b) hodnota stavovej premennej sa vzďaluje od pôvodnej hodnoty – hovoríme o nestabilite sústavy. Jasné je, že z technického hľadiska je nestabilita "škodlivý jav" a pri návrhu systémov je potrebné skúmať podmienky stability. Ako príklad uveď me ešte hojdačku. Táto má dve stacionárne (rovnovážne) polohy: a) v dolnej úvrati drobné odchýlky spôsobujú návrat do pôvodnej polohy (kvôli treniu) - táto poloha je asymptoticky stabilná; b) v hornej úvrati spôsobia drobné odchýlky prechod do dolnej rovnovážnej polohy, systém sa nevráti do pôvodného stavu - táto rovnovážna poloha je nestabilná. Ak by bolo možné uvažovať hojdačku bez trenia, potom by odchýlka spodného bodu spôsobila netlmené kmitanie – amplitúda odchýlky by sa nezväčšovala – vtedy hovoríme o stabilite.

Ďalší zaujímavý príklad je uvedený v knihe (PONTRJAGIN, 1974). Ak si všimneme kyvadlové hodiny, v závislosti na počiatočnej odchýlke kyvadla

nastávajú dva prípady. Ak je odchýlka malá, kyvadlo sa po chvílke zastaví. Ak je kyvadlo vychýlené na väčší uhol, postupne sa kmity ustália a režim môžeme pokladať za stacionárny, čo odpovedá periodickému riešeniu sústavy. Môžeme povedať, že hodiny majú dve "stacionárne riešenia", ktoré sú v istom zmysle *stabilné*.

Prejdime k presnej definícii stability riešenia diferenciálneho systému podľa Ljapunova.

Definícia 2. Riešenie x(t) systému (1) sa nazýva **stabilné** podľa Ljapunova práve vtedy, ak

1) existuje také $\delta_0 > 0$, že pre každé $\delta < \delta_0$ pre všetky hodnoty z_0 , pre ktoré platí $||z_0 - x(t_0)|| < \delta$ existuje riešenie z(t) systému (1) vyhovujúce začiatočnej podmienke $z(t_0) = z_0$, definované pre $t > t_0$ a ak

2) pre každé $\varepsilon > 0$ existuje $\delta(\varepsilon, t_0) > 0$ také, že pre každé riešenie z(t) systému (1) z podmienky $||z(t_0) - x(t_0)|| < \delta$ vyplýva pre všetky $t > t_0$ splnenie podmienky $||z(t) - x(t)|| < \varepsilon$.

Poznámka 1.5. ||x|| je norma alebo veľkosť vektora *x*. V *n*-rozmernom priestore sú všetky normy ekvivalentné, preto nie je podstatné akú normu použijeme.

Definícia 3. Riešenie x(t) systému (1) sa nazýva **asymptoticky stabilné** práve vtedy, ak je **stabilné a navyše** existuje $\delta_1 > 0$ také, že pre každé riešenie z(t) systému (1) z podmienky $||z(t_0) - x(t_0)|| < \delta_1$ vyplýva splnenie podmienky $\lim_{t\to\infty} ||z(t) - x(t)|| = 0$.

Poznámka 1.6. Stabilita teda znamená, že odchýlka sa nebude zväčšovať mimo povolené hranice, asymptotická stabilita navyše zabezpečí návrat ku pôvodnému riešeniu.

1.2.1. Stabilita riešení lineárnych systémov

V prípade lineárnych systémov je výskum stability podstatne jednoduchší ako v prípade nelineárnych.

Veta (o stabilite riešení lineárnych systémov). Každé riešenie lineárneho systému (3) je (asymptoticky) stabilné práve vtedy, **ak je (asymptoticky) stabilné nulové riešenie** lineárneho systému (3) s nulovou pravou stranou.

Dôkaz. Zapíšme najskôr podmienku stability nulového riešenia lineárnej sústavy bez pravej strany (zrejme platí $\dot{\mathbf{0}} = \mathbf{A}(t)\mathbf{0}$):

 $\forall \varepsilon > 0 \exists \delta > 0 : \forall u(t), \dot{u} = A(t)u : \|u(t_0)\| < \delta \Rightarrow \|u(t)\| < \varepsilon, \forall t > t_0.$

Uvažujme teraz dve riešenia (3) – x(t), ktorého stabilitu skúmame a ľubovoľné z(t), uvažované v definícii stability. Platí

 $\dot{\mathbf{x}} = \mathbf{A}(t)\mathbf{x} + \mathbf{b}(t) \quad \wedge \quad \dot{\mathbf{z}} = \mathbf{A}(t)\mathbf{z} + \mathbf{b}(t),$

a preto na základe linearity po odrátaní rovníc dostaneme

$$(\mathbf{z} - \mathbf{x}) = \mathbf{A}(t)(\mathbf{z} - \mathbf{x}).$$

Označme u(t) = z(t) - x(t) a uvažujme rovnaké ε a δ v definícii stability aj v definícii stability nulového riešenia. Ak je riešenie (3) x(t) stabilné, potom platí implikácia

$$\|\boldsymbol{z}(t_0) - \boldsymbol{x}(t_0)\| < \delta \implies \|\boldsymbol{z}(t) - \boldsymbol{x}(t)\| < \varepsilon, \ \forall t > t_0,$$

teda platí implikácia

 $\|\boldsymbol{u}(t_0)\| < \delta \Rightarrow \|\boldsymbol{u}(t)\| < \varepsilon, \, \forall t > t_0,$

čo znamená, že nulové riešenie (3) bez pravej strany je stabilné. Keďže posledne dve uvedené implikácie sú ekvivalentné, platí aj opačná úvaha. Ak je nulové riešenie homogénneho systému stabilné, je stabilné aj riešenie x(t) systému (3) s pravou stranou.

Podobne sa dá dokázať aj ekvivalencia asymptotickej stability.

Podmienky stability lineárnych sústav s konštantnými koeficientmi typu (4) sú preskúmané najlepšie. Spomeňme si, aký tvar môžu mať jednotlivé riešenia (4) bez pravej strany a uvažujme stabilitu nulového riešenia. Riešenie (4) s nulovou pravou stranou je lineárna kombinácia riešení tvaru

$$\mathbf{x}_0(t) = \mathrm{e}^{\lambda t} \left(t^s \boldsymbol{v}_s + \dots + t \boldsymbol{v}_1 + \boldsymbol{v}_0 \right), \tag{13}$$

Ak niektoré vlastné číslo λ má kladnú reálnu zložku, potom riešenie $x_0(t)$ neohraničene rastie a nulové riešenie nemôže byť stabilné. Naopak, v prípade, ak všetky vlastné čísla λ majú zápornú reálnu zložku, veľkosť

riešenia $\mathbf{x}_0(t)$ klesá k nule (členy t^k rastú pomalšie, ako klesá exponenta) a teda nulové riešenie je asymptoticky stabilné. Na stabilitu ostávajú prípady, ak sa reálne zložky niektorých vlastných hodnôt dostanú na imaginárnu os. V tom prípade môže (ale nemusí) nastať nestabilita len v prípade násobných koreňov s nulovou reálnou zložkou.

Vidíme, že otázka stability lineárnych sústav sa transformuje na otázku, aké reálne zložky majú vlastné čísla matíc a je istá šanca, že odpoveď na túto otázku môžeme dať bez výpočtu vlastných čísel len na základe skúmania vlastností charakteristickej rovnice, resp. charakteristického polynómu.

Poznámka 1.7. Ak máme poruke MATLAB, nasledujúce vety, ktoré využívajú vlastnosti charakteristických polynómov, nemusíme študovať. Príkaz

 $roots([a_n, a_{n-1}, ..., a_2, a_1, a_0])$

nám poskytne všetky korene polynómu s uvedenými koeficientmi.

Veta (o nutnej podmienke asymptotickej stability). Nech všetky korene polynómu *n*-tého stupňa ($a_n \neq 0, n > 0$) s reálnymi koeficientmi

 $P(\lambda) = a_n \lambda^n + a_{n-1} \lambda^{n-1} + \dots + a_2 \lambda^2 + a_1 \lambda + a_0$

majú záporné reálne zložky. Potom platí

 $a_{k+1} \cdot a_k > 0$ pre všetky $k = 0, 1, \dots, n-1$.

Poznámka 1.8. Z tvrdenia vety vyplýva, že ak je systém asymptoticky stabilný, musia byť všetky koeficienty jeho charakteristického polynómu

kladné alebo musia byť všetky záporné.

Dôkaz. Zapíšme rozklad polynómu $P(\lambda)$ na súčin koreňových činiteľov nad poľom \mathbb{C} :

$$P(\lambda) = a_n(\lambda - \lambda_1)^{k_1}(\lambda - \lambda_2)^{k_2}\cdots(\lambda - \lambda_s)^{k_s}$$

kde $\lambda_i \in \mathbb{C}$, pre každé $i = 1, 2, \dots, s$ a $k_1 + k_2 + \dots + k_s = n$.

Pre reálne λ_i musí byť $\lambda_i < 0$ a preto výraz $(\lambda - \lambda_i)$ aj výraz $(\lambda - \lambda_i)^{k_i}$ obsahujú okrem parametra λ len kladné koeficienty (napr. ak $\lambda_i = -3$, bude $(\lambda - \lambda_i)^2 = (\lambda + 3)^2 = \lambda^2 + 6\lambda + 9$).

Ak je koreňom polynómu nereálne komplexné číslo so zápornou reálnou zložkou, je koreňom s rovnakou násobnosťou aj komplexne združené číslo. Zjednotíme teda nereálne korene do dvojíc komplexne združených. Dostaneme výrazy

$$(\lambda - \lambda_i)(\lambda - \lambda_i^*) = (\lambda^2 - (\lambda_i + \lambda_i^*)\lambda + \lambda_i\lambda_i^*) = (\lambda^2 - 2\lambda \operatorname{Re} \lambda_i + |\lambda_i|^2).$$

Tieto výrazy a ich ľubovoľné prirodzené mocniny obsahujú okrem parametra λ len kladné koeficienty (napr. ak $\lambda_i = -5 + 2i$, bude výraz $(\lambda - \lambda_i)(\lambda - \lambda_i^*) = \lambda^2 + 10\lambda + 29$).

Keď všetky výrazy v rozklade na koreňové činitele prenásobíme, získame výraz so všetkými koeficientmi pri mocninách λ kladnými. Koeficienty polynómu vzniknú z týchto koeficientov prenásobením a_n , a teda všetky koeficienty $P(\lambda)$ majú rovnaké znamienko ako a_n .

Poznámka 1.9. Všimnime si na základe dôkazu, že ak by boli reálne zložky koreňov nekladné (nulové alebo záporné), neobjavili by sa koeficienty s rôznymi znamienkami. Preto charakteristický polynóm s rôznymi znakmi koeficientov svedčí o kladných reálnych zložkách vlastných čísel a teda o nestabilite.

Príklad 4. Rozhodnime o asymptotickej stabilite lineárneho systému (4) ak vieme, že charakteristický polynóm má tvar

 $P(\lambda) = (-1)^3 \lambda^3 + 2\lambda^2 + \lambda + 1.$

Riešenie. Keďže koeficient $a_3 = -1$ má iné znamienko ako ostatné koeficienty, systém je nestabilný.

Poznámka 1.10. Žiaľ, dokázaná veta nám umožňuje prijímať len negatívne rozhodnutia (z hľadiska stability).

Veta (nutná a postačujúca podmienka asymptotickej stability – Hurwitzovo kritérium). Nech polynóm *n*-tého stupňa ($a_0 > 0, n > 0$) s reálnymi koeficientmi má tvar

$$P(\lambda) = a_n \lambda^n + a_{n-1} \lambda^{n-1} + \dots + a_2 \lambda^2 + a_1 \lambda + a_0.$$

Potom reálne zložky všetkých koreňov polynómu *P* sú záporné práve vtedy, ak sú kladné všetky diagonálne minory **Hurwitzovej matice**

a_1	a_0	0	0	0	0	0	0	
<i>a</i> ₃	<i>a</i> ₂	a_1	a_0	0	0	0	0	
<i>a</i> ₅	a_4	<i>a</i> ₃	<i>a</i> ₂	a_1	a_0	0	0	
÷	÷	÷	÷	÷	:	۰.	÷	
0	0	0	0	0	0	0	a _n	

kde diagonálne minory sú

$$\Delta_1 = a_1, \quad \Delta_2 = \begin{vmatrix} a_1 & a_0 \\ a_3 & a_2 \end{vmatrix}, \quad \Delta_3 = \begin{vmatrix} a_1 & a_0 & 0 \\ a_3 & a_2 & a_1 \\ a_5 & a_4 & a_3 \end{vmatrix}, \quad \dots$$

Dôkaz. Žiaden elementárny a ľahko pochopiteľný dôkaz tejto vety neexistuje.

Poznámka 1.11. Ak vydelíme charakteristickú rovnicu členom λ^n , do-

staneme novú rovnicu pre 1/ λ , ktorej koeficienty sú rovnaké, ako koeficienty charakteristickej rovnice, ale sú zapísané v opačnom poradí. Ak $\lambda = |\lambda| e^{i \arg \lambda}$, tak $1/\lambda = 1/|\lambda| e^{-i \arg \lambda}$. Ak je Re $\lambda < 0$, bude uhol arg $\lambda \in (\pi/2, 3\pi/2)$ ale aj uhol $2\pi - \arg \lambda \in (\pi/2, 3\pi/2)$. Teda λ a $1/\lambda$ majú zápornú reálnu zložku súčasne. Preto sa môžeme stretnúť s rôznymi zápismi Hurwitzovej matice.

Príklad 5. Vyšetrime stabilitu systému, ktorého charakteristický polynóm je

 $P(\lambda) = \lambda^4 + 4\lambda^3 + 3\lambda^2 + 2\lambda + 1.$

Riešenie. Koeficient $a_0 = 1 > 0$. Zostavíme maticu podľa Hurwitzovho kritéria:

2	1	0	0
4	3	2	1
0	1	4	3
0	0	0	1

a vypočítame potrebné determinanty:

 $\Delta_1 = 2 > 0, \quad \Delta_2 = 2 > 0, \quad \Delta_3 = 4 > 0, \quad \Delta_4 = 4 > 0.$

Systém je asymptoticky stabilný. "Pre istotu" uvedieme aj korene určené MATLABom, zapísané na 4 desatinné miesta: -3.2340; -0.6724; -0.0468 + 0.6765i; -0.0468 - 0.6765i.

Poznámka 1.12. Hurwitzovo kritérium na rozdiel od MATLABu umožňuje
výskum stability sústav s parametrami, čo môže byť užitočné pri riešení praktických úloh.

Príklad 6. Určme podmienky, pri ktorých je nulové riešenie diferenciálnej rovnice $\ddot{x} + 3\ddot{x} + a\dot{x} + bx = 0$ stabilné.

Riešenie. Hoci sme diferenciálnu rovnicu vyššieho rádu doteraz neuvádzali, na tomto mieste len povieme, že riešenie x(t) hľadáme v tvare $e^{\lambda t}$ a jej charakteristická rovnica je $\lambda^3 + 3\lambda^2 + a\lambda + b = 0$. Jedna z podmienok je $a_0 = b > 0$. Na výskum stability nulového riešenia ďalej vypočítame hlavné minory matice

 $\begin{bmatrix} a & b & 0 \\ 1 & 3 & a \\ 0 & 0 & 1 \end{bmatrix}, \quad \Delta_1 = a, \quad \Delta_2 = 3 a - b = \Delta_3.$

Teda musí platiť súčasne b > 0, a > 0 a 3a - b > 0, čo sa dá zjednodušiť na tvar 3a > b > 0.

Úloha 4. Určte podmienky stability systému s charakteristickou rovnicou $\lambda^2 + a \lambda + b = 0$.

Úloha 5. Určte podmienky stability systému s charakteristickou rovnicou $\lambda^4 + a \lambda^3 + 4 \lambda^2 + b \lambda + 1 = 0$.

Ďalšie príklady nájdete napríklad v zbierke (DOBOŠ a ŠKERLÍK, 1998).

Domovská stránka
Titulná strana
Obsah
(())
• •
Strana 37 z 348
Späť
Celá strana
Zatvoriť
Koniec

Poznámka 1.13. Existujú ďalšie elegantné kritériá (napr. kritérium Michajlova), ktoré umožňujú rozhodnúť o asymptotickej stabilite. Na tomto mieste však v tejto otázke budeme preferovať MATLAB.

1.2.2. Stabilita nelineárnych sústav

Ako sme už uviedli vyššie, správanie dynamických systémov, popisovaných nelineárnymi diferenciálnymi rovnicami môže byť omnoho zložitejšie (ale zároveň našťastie aj omnoho rozmanitejšie) ako správanie lineárnych systémov. Tomu odpovedá aj zvýšená náročnosť výskumu stability riešení nelineárnych sústav.

Na tomto mieste uvedieme len základné metódy vyšetrovania stability riešení nelineárnych sústav. Tejto problematike je venovaná značná pozornosť napr. v skriptách (CSONTÓ, 1980), kde nájdete aj súvis s praktickými úlohami, vznikajúcimi v teórii automatického riadenia.

Pre jednoduchosť budeme uvažovať v tejto časti len **autonómne** nelineárne systémy, pre ktoré rovnice (1) a (2) neobsahujú explicitnú závislosť na čase. Teda budeme uvažovať systémy tvaru

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}). \tag{14}$$

Poznámka 1.14. Autonómne systémy sa často uvažujú v aplikáciách. Ak za rovnakých podmienok uvedieme nejaký technický systém do prevádzky, očakávame, že jeho ďalšie správanie nebude ovplyvnené tým, či sa tak

stalo napríklad o ôsmej hodine ráno alebo tesne pred polnocou. Práve táto nezávislosť na čase je charakteristická pre autonómne systémy, ktorých stavy sa však v čase meniť môžu. Autonómny systém sa zmení na neautonómny, keď vezmeme do úvahy vonkajšie podmienky, ovplyvňujúce chod systému.

V systémoch (14) hrajú zaujímavú a dôležitú úlohu tzv. **stacionárne** (alebo tiež **rovnovážne**, **singulárne**, **pevné**) **riešenia** $x^*(t) \equiv x^*$, pre ktoré platí

$$f(x^*) = \mathbf{0}.\tag{15}$$

Ak sa totiž systém v určitom časovom okamihu t_0 dostane do stacionárneho stavu — $\mathbf{x}(t_0) = \mathbf{x}^*$ — tak vzhľadom na to, že bude platiť $\dot{\mathbf{x}}(t) = \mathbf{0}$, zotrvá systém v tomto stave (autonómny systém večne; "reálny autonómny" systém, ktorý je neustále vystavený vonkajším vplyvom len veľmi malú chvíľu). Práve stacionárne správanie technického systému je často požadované a stabilita daného rovnovážneho riešenia v praxi znamená, že dostatočne malé poruchy, resp. vonkajšie vplyvy, nevyvedú systém z tejto rovnováhy.

Ďalej budeme skúmať stabilitu rovnovážnych bodov nelineárnych autonómnych systémov.

Metóda prvého priblíženia

Vzhľadom na to, že x^* je stacionárny bod, môžeme za predpokladu hladkosti funkcií f na základe Taylorovej vety pre funkcie viacerých premenných zapísať systém (14) v nasledujúcom tvare

$$\dot{\mathbf{x}} = \mathbf{J} \left[\mathbf{x}(t) - \mathbf{x}^* \right] + \left[\mathbf{x}(t) - \mathbf{x}^* \right]^T \mathbf{R}(\mathbf{x}) \left[\mathbf{x}(t) - \mathbf{x}^* \right],$$
(16)

kde

$$J = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1} & \frac{\partial f_n}{\partial x_2} & \cdots & \frac{\partial f_n}{\partial x_n} \end{bmatrix}_{\mathbf{x}=}$$

je tzv. **Jacobiova** matica prvých derivácií jednotlivých rovníc podľa jednotlivých stavových premenných, počítaných v stacionárnom bode x^* a R(x)je spojitá vektorová funkcia. V tvare (16) je dobre vidieť, že ak je norma odchýlky $x(t) - x^*$ malá, väčšinou hrá rozhodujúcu úlohu pre dynamiku v najbližších momentoch prvý — lineárny — člen na pravej strane. Tomu odpovedá nasledujúca

 x^*

Veta (Ljapunovova o prvom priblížení). Ak všetky vlastné hodnoty matice *J* systému (16) majú záporné reálne časti, tak stacionárne riešenie x^* systému (16) je asymptoticky stabilné; ak má niektorá vlastná hodnota kladnú reálnu časť, potom je riešenie x^* nestabilné.

Dôkaz. Ponecháme dôkaz len na intuíciu čitateľa. Druhý člen na pravej strane (16) hrá významnejšiu úlohu ako prvý práve v prípadoch hranič-

ných, ked podľa Ljapunovovej metódy prvého priblíženia nemôžeme rozhodnúť ani o stabilite ani o nestabilite riešenia (16).

Poznámka 1.15. Z praktického hľadiska môže byť vhodné uskutočniť substitúciu $z(t) = x(t) - x^*$ a ďalej skúmať stabilitu nulového riešenia $z(t) \equiv 0$.

Príklad 7. Vyšetrime stabilitu stacionárnych bodov nelineárneho autonómneho systému

$$\dot{x}_1 = e^{x_1 + x_2} - x_2,$$

$$\dot{x}_2 = -x_1 + x_1 x_2.$$

Riešenie. Stacionárne body sú riešením nelineárnej sústavy rovníc

$$\begin{array}{l}
0 = e^{x_1 + x_2} - x_2, \\
0 = -x_1 + x_1 x_2.
\end{array}$$

Druhá rovnica má tvar $x_1 (x_2 - 1) = 0$, odkiaľ dostávame, že buď $x_1 = 0$ alebo $x_2 = 1$. Po dosadení $x_1 = 0$ do prvej rovnice dostávame rovnicu $e^{x_2} = x_2$, ktorá nemá riešenie. Teda ostáva len druhá možnosť, $x_2 = 1$, pre ktorú z prvej rovnice získavame $e^{x_1+1} = 1$ a teda $x_1 = -1$. Systém má jediný stacionárny bod $x^* = (-1, 1)^T$. Vyšetríme jeho stabilitu. Zostavíme maticu prvých derivácií pravých strán a dosadíme do nej stacionárny bod.

$$\boldsymbol{J} = \begin{bmatrix} e^{x_1 + x_2} & e^{x_1 + x_2} - 1 \\ -1 + x_2 & x_1 \end{bmatrix}_{(x_1, x_2)^T = (-1, 1)^T} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.$$

Vlastné hodnoty matice J sú 1 a -1 a teda na základe Ljapunovovej vety o prvom priblížení môžeme konštatovať, že stacionárny bod je nestabilný.

Poznámka 1.16. V príklade 7 sme mali šťastie, že sme dokázali nájsť všetky riešenia nelineárnej sústavy. V praxi je to skôr výnimočný prípad. Nelineárne sústavy je väčšinou potrebné riešiť numerickými metódami, napr. Newtonovou metódou.

Príklad 8. Vyšetrime stabilitu stacionárnych bodov nelineárneho autonómneho systému

 $\dot{x}_1 = x_1^3 - x_2, \\ \dot{x}_2 = x_1 + x_2^3.$

Riešenie. Podobne ako pri predchádzajúcom príklade sa dostaneme ku rovnici $x_1 + x_1^9 = 0$, ktorú zapíšeme v tvare $x_1 (1 + x_1^8) = 0$. Táto rovnica má jediné reálne riešenie $x_1 = 0$ a preto má systém jediný singulárny bod $x^* = (0, 0)^T$.

 $\boldsymbol{J} = \begin{bmatrix} 3 x_1^2 & -1 \\ 1 & 3 x_2^2 \end{bmatrix}_{(x_1, x_2)^T = (0, 0)^T} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}.$

Vlastné hodnoty matice J sú \pm i a teda na základe Ljapunovovej vety o prvom priblížení nie sme schopní rozhodnúť o stabilite alebo nestabilite stacionárneho bodu.

Úloha 6. Vyšetrite stabilitu stacionárnych bodov nelineárneho autonómneho systému (DOBOŠ a ŠKERLÍK, 1998):

$$\dot{x}_1 = \ln(1 - x_2 + x_2^2),$$

 $\dot{x}_2 = 3 - \sqrt{x_1^2 + 8x_2}.$

Metóda Ljapunovových funkcií

Ako sme sa presvedčili v príklade 8, sú prípady, keď na základe metódy prvého priblíženia nemôžeme rozhodnúť o stabilite či nestabilite stacionárnych bodov. Podstatne silnejší aparát na výskum stability nelineárnych sústav poskytuje teória Ljapunovovych funkcií. S úvodom do nej sa zoznámime. Táto časť je spracovaná podľa knihy (ARROWSMITH a PLACE, 1982), podstatne viac informácií, najmä o možnostiach konštruovania Ljapunovových funkcií, nájdete v skriptách (CSONTÓ, 1980).

Definícia 4. Reálna funkcia $V: N \subseteq \mathbb{R}^n \to \mathbb{R}$, kde N je nejaké okolie bodu $\mathbf{0} \in \mathbb{R}^n$, sa nazýva kladne (záporne) definitnou v N práve vtedy, ak $V(\mathbf{x}) > 0$ ($V(\mathbf{x}) < 0$) pre všetky $\mathbf{x} \in N \setminus \{\mathbf{0}\}$ a $V(\mathbf{0}) = 0$.

Definícia 5. Reálna funkcia $V: N \subseteq \mathbb{R}^n \to \mathbb{R}$, kde *N* je nejaké okolie bodu $\mathbf{0} \in \mathbb{R}^n$, sa nazýva kladne (záporne) semidefinitnou v *N* práve vtedy, ak $V(\mathbf{x}) \ge 0$ ($V(\mathbf{x}) \le 0$) pre všetky $\mathbf{x} \in N \setminus \{\mathbf{0}\}$ a $V(\mathbf{0}) = 0$.

Definícia 6. Deriváciu funkcie $V: N \subseteq \mathbb{R}^n \to \mathbb{R}$ v smere parametricky zadanej krivky x(t), kde x(t) je riešenie sústavy (14), budeme nazývať **derivácia funkcie** *V* **podľa riešenia** *x*. Môžeme ju zapísať v tvare

$$\dot{V}[\mathbf{x}(t)] = \frac{\partial V}{\partial x_1} \dot{x}_1 + \frac{\partial V}{\partial x_2} \dot{x}_2 + \dots + \frac{\partial V}{\partial x_n} \dot{x}_n$$

Definícia 7. Funkcia *V*, ktorá vyhovuje nasledujúcim podmienkam:

1. Parciálne derivácie $\partial V / \partial x_i$, i = 1, 2, ..., n, existujú a sú spojité,

2. *V* je kladne definitná,

3. *V* je záporne semidefinitná (definitná),

sa nazýva slabá (silná) Ljapunovova funkcia.

Veta (Ljapunovova o stabilite). Nech systém $\dot{x} = f(x)$ má stacionárny bod v začiatku súradnicového systému \mathbb{R}^n . Ak v nejakom okolí *N* bodu **0** existuje slabá (silná) Ljapunovova funkcia, tak bod **0** je (asymptoticky) stabilný.

Dôkaz. Namiesto dôkazu len vysvetlíme princíp, o ktorý sa tvrdenie vety opiera. Na obrázku 1 je znázornená kladne definitná funkcia $V(x_1, x_2) = x_1 - \ln(1 + x_1) + x_2^2$. Ak by bola jej derivácia podľa riešenia nejakého systému záporná, znamenalo by to, že bod $\mathbf{x}(t)$ sa s narastajúcim časom pohybuje v rovine \mathbb{R}^2 takým spôsobom, že sa posúva z jednej izolínie na druhú v smere ich klesania. To ho však nevyhnutne "približuje" ku bodu (0, 0). Teda riešenie **0** je asymptoticky stabilné.

Domovská stránka
Titulná strana
Obsah
())
Strana 45 z 348
Späť
Celá strana
Zatvoriť
Koniec

Obr. 1: Graf a izolínie funkcie $V(x_1, x_2) = x_1 - \ln(1 + x_1) + x_2^2$

Príklad 9. Vyšetrime stabilitu nulového riešenia systému

$$\dot{x}_1 = -2 x_1^3 + 5 x_2, \dot{x}_2 = -3 x_1 - 5 x_2^3.$$

Riešenie. Najprv sa pokúsime vyriešiť príklad metódou prvého priblíženia. $J = \begin{bmatrix} 0 & 5 \\ -3 & 0 \end{bmatrix}$, a teda jej vlastné hodnoty sú rýdzoimaginárne a nemôžeme rozhodnúť ani o stabilite ani o nestabilite nulového riešenia. Skúsme nájsť Ljapunovovu funkciu v tvare $V(x_1, x_2) = a x_1^2 + b x_2^2, a > 0$,

b > 0. Vypočítame deriváciu na riešení daného systému:

$$\dot{V}[\mathbf{x}(t)] = 2 a x_1 [-2 x_1^3 + 5 x_2] + 2 b x_2 [-3 x_1 - 5 x_2^3] =$$
$$= -4 a x_1^4 - 10 b x_2^4 + 2 x_1 x_2 [5 a - 3 b].$$

Ak zvolíme parametre *a*, *b* tak, aby platilo 5a - 3b = 0 (napr. a = 3 a b = 5), bude funkcia *V* zrejme silnou Ljapunovovou funkciou a teda na základe Ljapunovovej vety o stabilite bude nulové riešenie asymptoticky stabilné.

Poznámka 1.17. Všimnime si, že funkcia $V(x_1, x_2) = 3x_1^2 + 5x_2^2$ bude spĺňať podmienky vety nielen v nejakom dostatočne malom okolí *N* bodu **0**, ale v ľubovoľnom okolí. V takom prípade hovoríme o **asymptotickej stabilite v celom** (viď skriptá (CSONTÓ, 1980)).

Príklad 10. Pomocou Ljapunovovej funkcie vyšetrime stabilitu systému

$$\dot{x}_1 = x_1^3 - x_2, \\ \dot{x}_2 = x_1 + x_2^3.$$

Riešenie. Tento príklad sme už riešili metódou prvého priblíženia, ktorá na jedinom stacionárnom bode $(0,0)^T$ zlyhala. Skúsme nájsť Ljapunovovu funkciu v tvare $V(x_1, x_2) = a x_1^2 + b x_2^2$, a > 0, b > 0. Vypočítame deriváciu podľa riešenia daného systému:

$$\dot{V}[\mathbf{x}(t)] = 2ax_1[x_1^3 - x_2] + 2bx_2[x_1 + x_2^3] = 2ax_1^4 + 2bx_2^4 + 2x_1x_2[a - b].$$

Vidíme, že v tomto prípade bude pri a = b derivácia $\dot{V}[\mathbf{x}(t)]$ na riešení kladne definitná (a teda to nie je Ljapunovova funkcia). Obrázok 1 nám pomôže pochopiť, že v takom prípade sa pohybujeme po vrstevniciach smerom od bodu 0 a teda tento bod je nestabilný.

Poznámka 1.18. O nestabilite sme pri riešení predchádzajúceho príkladu rozhodli len na základe intuície. Existuje aj veta o nestabilite, podobná na Ljapunovovu vetu o stabilite, ale ako pri každom negatívnom rozhodovaní, vystačíme s trochu slabšími podmienkami.

Veta (o nestabilite). Nech systém $\dot{x} = f(x)$ má stacionárny bod v začiatku súradnicového systému \mathbb{R}^n . Ak v nejakom okolí *N* bodu **0** existuje diferencovateľná funkcia *V* taká, že sú splnené podmienky:

- 1. Definičný obor *V* obsahuje nejaké okolie *N* bodu **0**.
- 2. V ľubovoľnom okolí bodu **0** existuje bod x taký, že V(x) > 0.
- 3. $V(\mathbf{0}) = 0$.
- 4. \dot{V} je kladne definitná.

tak bod **0** je nestabilný.

Dôkaz. Je uvedený v knižke (ARROWSMITH a PLACE, 1982).

Poznámka 1.19. V skriptách (DOBOŠ a ŠKERLÍK, 1998; PIRČ, HAŠČÁK a

OSTERTAGOVÁ, 2000) je uvedená známa Četajevova veta o nestabilite. Táto umožňuje dokázať nestabilitu aj ďalších prípadoch, keď nie sú splnené podmienky Vety o nestabilite.

Poznámka 1.20. Ľahko overíte, že funkcia *V* z predchádzajúceho príkladu spĺňa podmienky vety o nestabilite a teda naše intuitívne rozhodnutie má pevný teoretický základ.

Príklad 11. Vyšetrime nestabilitu systému (DOBOŠ a ŠKERLÍK, 1998):

 $\dot{x}_1 = x_1^4 + x_2^3, \\ \dot{x}_2 = x_1^3 + x_2^4.$

Riešenie. Metóda prvého priblíženia nám dáva nulovú Jacobiovu maticu. V tomto príklade by si skúsený analytik iste všimol symetriu premenných x_1 a x_2 (pri vzájomnej výmene x_1 za x_2 sa systém nemení) a "oťukal" by stabilitu rovníc (vlastne rovnice) pri $x = x_1 = x_2$: $\dot{x} = x^4 + x^3$. Pri "malých" x by ju nahradil rovnicou $\dot{x} = x^3$. Pre túto rovnicu už vidno, že ak zvolíme $x(0) \neq 0$ kladné, riešenie bude narastať, ak ho zvolíme záporné, bude naopak klesať (vysvetlite prečo). Teda v obidvoch prípadoch sa bude od nulového riešenia vzďaľovať, čo svedčí o nestabilite.

Týmito úvahami chceme naznačiť, že situácia pri vyšetrovaní stability nie je vôbec jednoduchá. Podľa nás je praktickejšie použiť MATLAB, pustiť Rungeho-Kuttovu metódu numerického riešenia daného systému z blízkeho okolia bodu **0** a na vlastné oči sa o nestabilite presvedčiť. K tejto problematike sa vrátime v nasledujúcej kapitole.

Vypočítajme deriváciu funkcie $V(x_1, x_2) = x_1 \cdot x_2$ (radšej sa nepýtajte, odkiaľ sa vzala) podľa riešenia:

 $\dot{V}[\mathbf{x}(t)] = x_2 [x_1^4 + x_2^3] + x_1 [x_1^3 + x_2^4] = x_1^4 [1 + x_2] + x_2^4 [1 + x_1].$

Môžeme sa presvedčiť, že funkcia *V* spĺňa podmienky vety o nestabilite, čo potvrdzuje sformulovanú hypotézu. V skriptách (DOBOŠ a ŠKERLÍK, 1998) nájdete iný spôsob dôkazu nestability (hoci s drobným preklepom).

Konštrukcia funkcií, vhodných na aplikovanie viet o stabilite alebo nestabilite, pripomína skôr nejaké čarodejnícke triky. V knihe (CSONTÓ, 1980) sa uvádza súvis Ljapunovových funkcií s celkovou energiou tzv. konzervatívnych sústav a tiež niekoľko metód konštruovania Ljapunovovych funkcií pre isté triedy nelineárnych sústav.

Úloha 7. Pre všetky hodnoty parametrov *a* a *b* vyšetrite stabilitu nulového riešenia systému

$$\dot{x}_1 = x_1 + a x_2 + x_2^2,$$

$$\dot{x}_2 = b x_1 - 3 x_2 - x_2^2,$$

Úloha 8. Vyšetrite stabilitu stacionárnych riešení systému

$$\dot{x}_1 = -3 x_1 + x_2 - x_1^3, \\ \dot{x}_2 = 6 x_1 - 2 x_2.$$

Momentálny stav "systému" Príroda je zrejme dôsledkom toho, akým bol v predchádzajúcom momente a ak si predstavíme Rozum, ktorý dokáže k určitému časovému okamžiku spracovať všetky vzťahy medzi jednotlivými časťami vesmíru, potom tento môže predpovedať polohu, pohyby a všeobecné vzťahy medzi všetkými týmito časťami pre všetky časové okamžiky v minulosti a v budúcnosti.

Laplace, 1776 (HEINRICHS, 1993).

Môže sa prihodiť, že malé odchýlky v začiatočných podmienkach nakoniec spôsobia veľké rozdiely v danom jave. Malá začiatočná chyba spôsobí neskôr veľkú chybu. Predpovede budú asi nemožné, stretávame sa s náhodným javom.

Poincaré, 1903 (HEINRICHS, 1993)

2. Stavové (fázové) priestory a fázové portréty

Pojmy fázový priestor, fázová trajektória a fázový portrét umožňujú lepšie pochopiť správanie sa dynamických systémov najmä nižších rádov. V tejto kapitole sa zoznámime s týmito pojmami a s ich použitím.

Dynamický systém popisovaný diferenčnými (v diskrétnom) alebo diferenciálnymi (v spojitom prípade) rovnicami sa v každom okamihu nachádza v určitom "stave". Pri fyzikálnom alebo inom modelovaní si všímame kvantitatívne hodnoty určitých veličín, ktoré sa zvyknú nazývať **stavové veličiny**, pretože na základe nich usudzujeme o stave systému. Vo fyzike sa

zasa rôznym stavom zvyklo hovoriť **fázy** (počuli ste už iste o pevnej alebo tekutej fáze) a tak sa *stavové veličiny* môžu nazývať tiež *fázové veličiny*. Príkladmi stavových veličín môžu slúžiť napríklad výchylka a okamžitá rýchlosť kyvadla, koncentrácie chemických látok, početnosť nejakej populácie a pod.

Metóda stavového priestoru vychádza z geometrickej kvalitatívnej teórie diferenciálnych rovníc, založenej na klasických prácach francúzskeho matematika H. Poincaré (CSONTÓ, 1980).

Ak budeme uvažovať dynamický systém charakterizovaný *n* stavovými veličinami $x_1, x_2, ..., x_n$ (je samozrejmé, že vždy pracujeme len s aproximáciami reálnych systémov), potom aktuálny stav systému v danom časovom okamihu *t* je daný hodnotou vektora $\mathbf{x}(t) = [x_1(t), x_2(t), ..., x_n(t)]$.

Definícia 8. Množinu všetkých možných stavov dynamického systému budeme nazývať **stavový (fázový) priestor**.

Poznámka 2.1. Za stavový priestor *n*-rozmerného systému môžeme považovať aj celý priestor \mathbb{R}^n , aj keď stavové veličiny žiadneho fyzikálneho alebo technického systému nemôžu nadobúdať ľubovoľné reálne hodnoty.

Ak budeme pozorovať vývin stavových veličín v čase, z geometrického hľadiska sa budeme pohybovať po určitej krivke (v prípade spojitých systémov) vo fázovom priestore, a teda aj v \mathbb{R}^n . Uvažujme teda, podobne ako v predchádzajúcej kapitole, autonómny dynamický systém, popisovaný vo

všeobecnosti nelineárnym systémom *n* diferenciálnych rovníc:

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}). \tag{17}$$

Definícia 9. Riešenie x(t) diferenciálneho systému (17) pre $t \ge t_0$, kde $x(t_0) = x_0$, určuje v priestore \mathbb{R}^n **fázovú trajektóriu (krivku)**, prechádzajúcu bodom x_0 .

Fázová trajektória prechádzajúcu bodom x_0 predstavuje vlastne **evo**lúciu fázového bodu x_0 , čo je tiež možné interpretovať ako **tok** fázových bodov v stavovom priestore. Smer (lepšie povedané **orientácia**) tohoto pohybu sa zvykne vyznačovať šípkou.

Definícia 10. Súhrn všetkých trajektórií, prechádzajúcich cez všetky body fázového priestoru sa nazýva **fázový portrét systému**.

Poznámka 2.2. Vo fázovom priestore môžeme zobrazovať aj neautonómne dynamické systémy. Fázové trajektórie autonómneho systému sa však nemôžu pretínať, to by znamenalo nejednoznačnosť riešenia systému rovníc v určitom bode. Tieto trajektórie sa však môžu uzavrieť a vytvoriť cyklus, odpovedajúci periodickému riešeniu sústavy rovníc. Napriek tomu sa však môže občas zdať, že trajektórie sa pretínajú. Je to vtedy, ak existujú **stacionárne** riešenia, ktorých "trajektórie" pozostávajú z jediného bodu. V tomto prípade sa **iné** trajektórie môžu približovať k týmto stacionárnym bodom alebo sa od nich vzďaľovať. Tak vzniká dojem pretínania sa fázových trajektórií.

Definícia 11. Stacionárny bod budeme nazývať **atraktorom**, ak v nejakom jeho okolí začínajuce trajektórie konvergujú ku danému bodu a **repelerom**, ak existuje také prstencové okolie stacionárneho bodu (neobsahujúce samotný bod), ktorého všetky trajektórie, začínajúce v ňom, ho po určitom čase opustia.

Fázové portréty môžu veľmi dobre slúžiť na kvalitatívne porovnanie dvoch rôznych dynamických systémov.

Definícia 12. Dve sústavy diferenciálnych rovníc sa nazývajú **topologicky orbitálne ekvivalentnými** alebo **kvalitatívne ekvivalentnými** práve vtedy, ak existuje spojité vzájomne jednoznačné zobrazenie fázového priestoru prvej sústavy na fázový priestor druhej sústavy, zobrazujúce orientované fázové trajektórie prvej sústavy na súhlasne orientované fázové trajektórie druhej sústavy. Pritom sa nevyžaduje zosúladenie pohybov po jednotlivých fázových krivkách (ARNOĽD, 1978).

V prípade autonómnych sústav sa môžeme "zbaviť" časovej závislosti tým, že jednotlivé rovnice navzájom vydelíme. V dvojrozmernom prípade tak prídeme ku **diferenciálnej rovnici fázových trajektórií**:

$$\frac{\mathrm{d}x_2}{\mathrm{d}x_1} = \frac{f_2(x_1, x_2)}{f_1(x_1, x_2)}.$$
(18)

Ak riešenia rovnice (18) vyhovujú rovnici $g(x_1, x_2) = C$, potom funkcia g sa nazýva **prvý integrál sústavy** $\dot{x} = f(x)$.

Definícia 13. Sústava $\dot{x} = f(x)$ sa nazýva **konzervatívna** práve vtedy, ak má netriviálny prvý integrál, definovaný na celej rovine \mathbb{R}^2 .

Poznámka 2.3. Konzervatívne alebo *hamiltonovské* sústavy hrajú dôležitú úlohu vo fyzike a teda aj v technike. Ich dynamika je definovaná pomocou tzv. Hamiltonovej funkcie (*hamiltoniánu*), odpovedajúcej celkovej energii systému (ARNOĽD, 1978).

V skriptách (CSONTÓ, 1980) sú uvedené viaceré postupy približného určovania fázových trajektórií nelineárnych sústav, súvisiacich s diferenciálnou rovnicou 2. rádu, ktorá sa v praxi často vyskytuje. Tiež sú tam uvedené ďalšie zaujímavé podrobnosti o fázových trajektóriách.

2.1. Fázové portréty jednorozmerných "systémov"

Vzhľadom na jednoduchosť fázových portrétov jednorozmerných "sústav" by bola škoda tieto obísť, pretože umožňujú vytvorenie jasnej predstavy o dynamike systému. *Fázový priestor je* v tomto prípade *priamka* (reálna os). Budeme uvažovať dynamický systém popisovaný diferenciálnou rovnicou

$$\dot{x} = f(x), \tag{19}$$

pričom o funkcii *f* budeme pre jednoduchosť predpokladať, že je spojitá na celej množine reálnych čísel.

Stacionárne body rovnice (19) predstavujú riešenia rovnice

$$f(x) = 0$$

a teda predstavujú nulové body funkcie f. Vzhľadom na to, že funkcia f je spojitá, v celých intervaloch medzi nulovými bodmi môže byť len kladná alebo len záporná. Zápornosť f však na základe (19) znamená, že hodnota x pri danom stave klesá, kladnosť naopak znamená nárast stavovej hodnoty x. Teda medzi dvoma stacionárnymi bodmi sa body fázovej trajektórie pohybujú len vľavo, resp. vpravo po reálnej osi.

Príklad 12. Znázornime fázový priestor rovníc

 $\dot{x} = 1 - x$ a $\dot{x} = -(1 - x)^2$.

Riešenie. Fázové portréty (aj so znamienkami derivácií funkcie *f* na jednotlivých intervaloch) sú znázornené na obrázku 2. Ako vidieť, obidve rovnice majú rovnaký stacionárny bod $x^* = 1$, avšak majú rôznu dynamiku (nie sú kvalitatívne ekvivalentné). Kým stacionárny bod prvej rovnice je *atraktor*, stacionárny bod druhej rovnice je polostabilný, nazývaný tiež *šunt*.

Príklad 13. Určme takú rovnicu, ktorá má 3 stacionárne body tak, aby jeden z nich bol atraktor, ďalší aby bol repeler a tretí nech je šunt.

Riešenie. Táto úloha má nekonečný počet riešení. Vymyslime takú rovni-

cu, aby boli atraktor prvý zľava, šunt v strede a repeler napravo. Aj v rámci takéhoto zadania ešte existuje nekonečne veľa rôznych rovníc, ktoré sú už však *kvalitatívne ekvivalentné*. Jedno z riešení je znázornené na obrázku 3.

Úloha 9. Je možné vymyslieť takú rovnicu, aby mala práve dva stacionárne body nasledujúcich typov?

- a) Dva atraktory.
- b) Dva repelery.
- c) Dva šunty.
- d) Repeler a atraktor.

Svoju odpoveď zdôvodnite a uveď te odpovedajúcu diferenciálnu rovnicu.

Úloha 10. Aké stacionárne body má rovnica $\dot{x} = (x + 1) \ln(x)$?

Úloha 11. Roztrieď te nasledujúce diferenciálne rovnice do ekvivalentných tried:

a) $\dot{x} = \operatorname{ch} x$;	b) $\dot{x} = (x - a)^2$;	c) $\dot{x} = \sin x$;
d) $\dot{x} = \cos x - 1;$	e) $\dot{x} = ch x - 1;$	f) $\dot{x} = \sin 2x;$
g) $\dot{x} = e^{x}$;	h) $\dot{x} = \operatorname{sh}^2(x-b);$	i) $\dot{x} = (x-1) \cdot \ln x$.
(Pomôcka: ch $x = $	$[e^{x} + e^{-x}]/2; \text{ sh } x =$	$= [e^x - e^{-x}]/2.)$

2.2. Fázové portréty lineárnych dvojrozmerných sústav

Ako sme už spomenuli vyššie, stabilita ľubovoľného riešenia lineárneho diferenciálneho systému je určená stabilitou nulového riešenia tohoto systému bez pravej strany. Rôzne kvalitatívne odlišné fázové portréty súvisia s vlastnými hodnotami matice systému. V prípade n = 2 je prakticky možné klasifikovať všetky prípady. Fázovým priestorom bude v tomto prípade **fázová rovina**. Budeme teraz uvažovať systém

$$\dot{x}_1 = a_{11} x_1 + a_{12} x_2,
\dot{x}_2 = a_{21} x_1 + a_{22} x_2$$
(20)

alebo v maticovom tvare

 $\dot{x} = A x.$

Na tomto mieste sa budeme venovať len fázovým trajektóriám lineárnych sústav, ktorých klasifikácia na základe vlastných hodnôt je zhrnutá

napríklad v tabuľke I, na strane 38–39 skrípt (CSONTÓ, 1980) alebo na obrázkoch 2.7 a 2.11 knihy (ARROWSMITH a PLACE, 1982).

Ak vydelíme druhú rovnicu sústavy (20) prvou, dostaneme diferenciálnu rovnicu fázových trajektórií v tvare

$$\frac{\mathrm{d}x_2}{\mathrm{d}x_1} = \frac{a_{21}\,x_1 + a_{22}\,x_2}{a_{11}\,x_1 + a_{12}\,x_2},\tag{21}$$

ktorú vo všeobecnosti môžeme zaradiť medzi homogénne diferenciálne rovnice. Homogénnu diferenciálnu rovnicu (21) môžeme po známej substitúcii $z(x_1) = x_2(x_1)/x_1$ upraviť na tvar separovateľnej diferenciálnej rovnice prvého rádu

$$\frac{\mathrm{d}z}{\mathrm{d}x_1} = \left[\frac{a_{21} + a_{22} z}{a_{11} + a_{12} z} - z\right] / x_1.$$
(22)

Hoci túto rovnicu dokážeme pre konkrétne zadané koeficienty a_{ij} presne vyriešiť, takto získaný výsledok môže byť dosť zložitý. Dobrý prehľad o lineárnych systémoch môžete získať numerickým výpočtom s grafickým znázornením riešenia vo fázovej rovine.

Na prvý pohľad vidno, že zvláštny prípad nastáva, ak je matica *A* nulová. V tom prípade má sústava s nulovou pravou stranou nekonečne veľa stacionárnych bodov v každom bode roviny \mathbb{R}^2 a fázové trajektórie pozostávajú z jednotlivých bodov roviny (keďže obidve derivácie v (20) sú nulové, nič sa nehýbe). Tento stav ukazuje na stabilitu sústavy. Ak budeme

v tomto prípade uvažovať autonómny systém s nenulovou pravou stranou

$$\dot{x}_1 = b_1,$$

 $\dot{x}_2 = b_2,$ (23)

uvidíme, že fázový portrét pozostáva z rovnobežných súhlasne orientovaných priamok, so smerovým vektorom $(b_1, b_2)^T$. Sústava nemá žiadne stacionárne body. Hoci typ stability riešenia ostáva nezmenený, fázový portrét je iný.

Dve nulové vlastné hodnoty má, napríklad, aj matica $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$.

Fázový portrét sústavy (20) budú v tomto prípade tvoriť priamky, rovnobežné s osou x_1 . V hornej polrovine $x_2 > 0$ bude však ich orientácia opačná ako v dolnej polrovine.

Úloha 12. Vysvetlite, prečo bude v práve uvedenom príklade fázový portrét tvorený rovnobežnými priamkami.

Ak má matica systému jednu vlastnú hodnotu nulovú a druhú nenulovú, hovoríme o tzv. nepodstatnej singularite. Taký prípad nastáva, ak je jeden z riadkov matice nenulový a druhý je jeho násobkom. Napríklad pre maticu $A = \begin{bmatrix} a_{11} & a_{12} \\ ka_{11} & ka_{12} \end{bmatrix}$ dostaneme $dx_2/dx_1 = k$ a teda máme $x_2 = kx_1 + q$. Teda fázové trajektórie budú ležať na rovnobežných priamkach. Napríklad v prípade matíc $A_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ a $A_2 = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix}$ (keďže k = 0)

budú tieto priamky rovnobežné s osou x_1 . Dvojrozmerný fázový portrét je vlastne poskladaný z jednorozmerných fázových portrétov, rovnakých ako je portrét na obrázku 2 vľavo. V prípade matice A_1 je druhá vlastná hodnota matice kladná, čo svedčí o nestabilite a os x_2 daná rovnicou $x_1 = 0$ je repelerom, teda orientácia na polpriamkach bude opačná, ako na obrázku 2. V prípade matice A_2 je druhá vlastná hodnota matice záporná, čo svedčí o stabilite, os x_2 bude atraktorom. Fázový portrét vytvoria polpriamky, rovnobežné s osou x_1 rovnako orientované, ako polpriamka na obrázku 2 vľavo.

Lineárny systém (20) s regulárnou maticou *A*, ktorej determinant |A| je nenulový sa nazýva **jednoduchý**. Jednoduchý systém (20) má jediný singulárny bod **0**. V tabuľke **1** vymenujeme rôzne typy singulárneho bodu *jednoduchých systémov* v závislosti na vlastných číslach λ_1 a λ_2 matice systému (20) (v tabuľke uvádzame vždy okrem vlastných čísel aj typ singulárneho bodu, príklad matice sústavy a náčrt fázového portrétu). Odpovedajúce fázové portréry nájdete v (ARROWSMITH a PLACE, 1982; CSONTÓ, 1980).

Poznámka 2.4. V prípade uzlov je ešte možné zvlášť uviesť prípady, keď sú charakteristické čísla násobné, čo má za následok algebraicky kvalitatívne odlišné riešenia. Toto sa prejaví aj na fázových portrétoch (porovnaj stabilný a nestabilný uzol v tabuľke 1). Na druhej strane z topologického hľadiska, ktoré vyjadruje definícia *kvalitatívnej ekvivalencie systémov*, uvedená vyššie, sú ekvivalentné dokonca aj uzly a ohniská. Teda z tohoto hľadiska existujú štyri kvalitatívne odlišné typy: asymptotická stabilita, stabilita typu stred, nestabilita typu uzol, resp. ohnisko a nestabilita typu

Domovská stránka

Tabuľka 1: Typy singulárneho bodu **0**

1.	$\lambda_1>0, \lambda_2>0$	nestabilný uzol	$\left[\begin{array}{rrr} 3 & 1 \\ 1 & 3 \end{array}\right]$	
2.	$\lambda_1 < 0, \lambda_2 < 0$	stabilný uzol	$\left[\begin{array}{rrr}1 & -2\\3 & -4\end{array}\right]$	
3.	$\lambda_1>0, \lambda_2<0$	sedlo	$\left[\begin{array}{rrr} -1 & 2\\ 3 & 4 \end{array}\right]$	
4.	$\lambda_1=\lambda_2^*\in\mathbb{C},\mathrm{Re}\lambda_1=0$	stred	$\left[\begin{array}{rrr} 0 & 2 \\ -3 & 0 \end{array}\right]$	
5.	$\lambda_1 = \lambda_2^* \in \mathbb{C}, \operatorname{Re} \lambda_1 > 0$	nestabilné ohnisko	$\left[\begin{array}{rrr}1&2\\-2&1\end{array}\right]$	
6.	$\lambda_1=\lambda_2^*\in\mathbb{C},\mathrm{Re}\lambda_1<0$	stabilné ohnisko	$\left[\begin{array}{rrr} -2 & 1\\ -1 & 2\end{array}\right]$	

sedlo.

Úloha 13. Numerickým riešením sústavy (20) s maticami, danými v tabuľke 1, overte kvalitatívnu správnosť portrétov, uvedených v tabuľke 1.

2.3. Fázové portréty nelineárnych dvojrozmerných sústav

V prípade nelineárnych sústav sú v porovnaní s fázovými portrétmi lineárnych sústav možné podstatne zložitejšie fázové portréty. Už v prípade dvojrozmerných nelineárnych sústav sú možné napríklad viaceré stacionárne body (aj konečný počet). Nasledujúca úloha ilustruje túto zložitejšiu situáciu.

Úloha 14. Pomocou numerického riešenia diferenciálnych sústav znázornite fázové portréty nasledujúcich sústav na vyznačených oblastiach:

a)
$$\dot{x}_1 = x_1(a - bx_2), \dot{x}_2 = -x_2(c - dx_2), a, b, c, d > 0;$$

 $x_1 \in \langle -0.1, 2c/d \rangle, x_2 \in \langle -0.1, 2a/b \rangle.$
b) $\dot{x}_1 = -x_1[1 - 3x_2^{2/3}(1 - x_1)/(1 + x_1)], \dot{x}_2 = x_2 - 3x_1x_2^{2/3}(1 + x_1);$
 $x_1 \in \langle -0.5, 1 \rangle, x_2 \in \langle -0.5, 2 \rangle.$
c) $\dot{x}_1 = (2 - x_1 - 2x_2)x_1, \dot{x}_2 = (2 - 2x_1 - x_2)x_2; x_1 \in \langle -0.5, 2.5 \rangle,$
 $x_2 \in \langle -0.5, 2.5 \rangle.$
d) $\dot{x}_1 = \sin x_1, \dot{x}_2 = -\sin x_2; x_1 \in \langle -2\pi, 2\pi \rangle, x_2 \in \langle -2\pi, 2\pi \rangle.$

V porovnaní s lineárnymi sústavami sa v prípade nelineárnych sústav objavuje nový fenomén — limitný (medzný) cyklus. Na nasledujúcich jednoduchých príkladoch ukážeme jeho existenciu.

Príklad 14. Vyšetrime fázový portrét nelineárnej sústavy, danej v polárnych súradniciach (ρ , φ) fázovej roviny rovnicami $\dot{\rho} = 1 - \rho$, $\dot{\varphi} = 1$.

Riešenie. Na základe druhej rovnice si pohybujúci bod fázovej trajektórie môžeme predstaviť ako rovnomerne rotujúci okolo bodu **0** tak, že jeho vzdialenosť ρ od bodu **0** sa s časom mení. Prvú diferenciálnu rovnicu sme už skúmali vyššie, jej fázový portrét je znázornený na obrázku **2** vľavo. Táto rovnica má jediný atraktor $\rho = 1$. Preto bude jednotková kružnica

atraktorom všetkých trajektórií uvažovaného systému. To znamená, že ak začneme v čase t_0 vo vnútri jednotkovej kružnice, trajektórie sa budú postupne navíjať na jednotkovú kružnicu zvnútra, ak začneme v čase t_0 vo vonkajšej oblasti jednotkovej kružnice, trajektórie sa budú postupne navíjať na jednotkovú kružnicu z vonkajšej strany. Vznikol *stabilný limitný cyklus*.

Definícia 14. Uzavretá fázová trajektória fázového portrétu sa nazýva **limitný cyklus** práve vtedy, ak je izolovaná od ostatných uzavretých trajektórií, teda ak existuje jej (otvorené) okolie neobsahujúce ďalšie uzavreté trajektórie.

Definícia 15. Limitný cyklus sa nazýva:

- a) *stabilný (príťažlivý*) alebo *atraktor*, ak sa na neho navíjajú trajektórie pri $t \to \infty$,
- b) *nestabilný* (*odpudzujúci*) alebo *repeler*, ak sa trajektórie špirály od neho vzďaľujú,
- c) *polostabilný*, ak sa trajektórie z jednej strany na neho navíjajú a z druhej strany sa od neho vzďaľujú.

Definícia 16. Pod **atraktorom** nelineárnej sústavy budeme chápať takú množinu bodov, ku ktorej sa blížia všetky trajektórie sústavy, ktoré začínajú v jej dostatočnej blízkosti.

Limitný cyklus príkladu 14 s dvoma trajektóriami je znázornený na obrázku 4. Na záver tohoto príkladu ešte uveď me jeho diferenciálne rovnice pre premenné x_1 a x_2 :

$$\dot{x}_1 = x_1 / \sqrt{x_1^2 + x_2^2} - x_1 - x_2,$$

$$\dot{x}_2 = x_2 / \sqrt{x_1^2 + x_2^2} + x_1 - x_2,$$

Úloha 15. Vyšetrite fázový portrét nelineárnej sústavy, danej v polárnych súradniciach (ρ , φ) fázovej roviny rovnicami $\dot{\rho} = \rho (\rho - 1)$, $\dot{\varphi} = 1$ a napíšte jej rovnice pomocou premenných x_1 a x_2 . Riešte aj numericky.

Úloha 16. Vymyslite sústavu rovníc, ktorá bude mať dva (tri, ...) limitné cykly.

Úloha 17. V nasledujúcom systéme, za ktorý podľa (KAHN, 1989) vďačíme H. Poincaré, sa pokúste získať diferenciálne rovnice pre polárne súradnice (ρ , φ):

$$\dot{x}_1 = \alpha (x_1 + x_2) - \sigma (x_1 - x_2) (x_1^2 + x_2^2), \\ \dot{x}_2 = -\alpha (x_1 - x_2) - \sigma (x_1 + x_2) (x_1^2 + x_2^2), \qquad \alpha > 0, \ \sigma > 0.$$

Uskutočnite numerický experiment — metódou Rungeho-Kuttovou riešte sústavu.

V praxi je samozrejme zaujímavé vedieť určiť, či nejaká sústava môže alebo nemôže mať limitný cyklus. Niekoľko takýchto viet nájdete v knihách (ARROWSMITH a PLACE, 1982; CSONTÓ, 1980).

2.4. Niektoré známe diferenciálne rovnice a systémy 2. rádu

Uvažujme diferenciálnu rovnicu druhého rádu tvaru

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = F[t, x(t), \dot{x}(t)].$$
(24)

Takéto rovnice sa vyskytujú v praxi na každom kroku, vyjadrujú Newtonov pohybový zákon, podľa ktorého je zrýchlenie hmotného bodu definované silou, ktorá na neho pôsobí.

Na základe substitúcie $x_1(t) = x(t)$, $x_2(t) = \dot{x}(t)$ prepíšeme rovnicu (24) na nasledujúci tvar systému 1. rádu:

$$\dot{x}_1 = x_2,$$

 $\dot{x}_2 = F(t, x_1, x_2).$
(25)

Vo fázovej rovine $(x_1, x_2)^T$ bude potom x_1 reprezentovať polohu a x_2 rýchlosť hmotmého bodu v čase t. Tvar (25) je vhodný na použitie numerických metód (Rungeho-Kuttovej alebo aj viackrokových) a podobná substitúcia sa používa na prepísanie (sústav) rovníc vyššieho rádu na sústavu prvého rádu a na riešenie Cauchyho začiatočnej úlohy.

Matematické kyvadlo bez trenia

Matematické kyvadlo bez trenia sa popisuje rovnicou

$$\ddot{x} + \omega^2 \sin x = 0. \tag{26}$$

Nelineárna rovnica (26) je pri malých výchylkách x nahrádzaná lineárnou rovnicou

$$\ddot{x} + \omega^2 x = 0$$

ktorej riešenie môžeme zapísať v tvare $x(t) = A \sin(\omega t + \varphi)$. Táto lineárna rovnica po prepísaní na systém 1. rádu bude mať jediný singulárny bod $(0,0)^T$ typu *stred* a jej fázový portrét predstavujú elipsy so stredom v bode **0**.

Pozrime sa, na fázový portrét pôvodného nelineárneho systému

$$\dot{x}_1 = x_2,$$

 $\dot{x}_2 = -\omega^2 \sin x_1.$
(27)

Ak prejdeme na rovnicu fázových trajektórií, môžeme ju presne vyriešiť v tvare

$$x_2^2 = 2\omega^2 \cos x_1 + C. (28)$$

Uvažujme, rovnako ako CSONTÓ (1980), pri akých hodnotách *C* existujú priesečníky kriviek (28) s osami x_1 , resp. x_2 . Pri $x_2 = 0$ máme

$$C=-2\omega^2\cos x_1,$$

a teda $C \in \langle -2\omega^2, 2\omega^2 \rangle$. Pre ľavý kraj $C = -2\omega^2$ dostávame

$$x_2^2 = 2\omega^2(\cos x_1 - 1) \leq 0$$

čo je možné len pri $x_1 = 2k\pi$ a súčasne $x_2 = 0$. Teda pre hodnotu $C = -2\omega^2$ budú "trajektórie" tvorené len jednotlivými bodmi, ktoré sú, ako sa ľahko presvedčíte z (27) stacionárnymi bodmi sústavy.

Pre pravú hranicu $C = 2\omega^2$ dostávame

$$x_2^2 = 2\omega^2(\cos x_1 + 1) = 4\omega^2 \cos \frac{x_1}{2}$$

alebo $x_2 = \pm 2\omega \cos(x_1/2)$. Pri väčších hodnotách *C* už trajektórie nepretínajú os x_1 , preto tieto krivky oddeľujú od seba dve oblasti s odlišným charakterom trajektórií. Takéto krivky sa nazývajú **separatrixy**.

Pozrime sa ešte, aká bude podmienka, aby sa trajektórie preťali s osou x_2 . Pri $x_1 = 0$ dostávame podmienku

$$x_2^2 = 2\omega^2 + C \geqq 0$$

z ktorej vyplýva, že $C \ge -2\omega^2$.

Fázový portrét je znázornený na obrázku 5. Je zrejmé, že sa principiálne odlišuje od portrétu linearizovanej sústavy.

Úloha 18. Vysvetlite význam jednotlivých trajektórií.

Matematické kyvadlo s trením

je špeciálny prípad Lienardovej rovnice.

Rayleighova rovnica

$$\ddot{x} - b\left(1 - c\,\dot{x}^2\right)\dot{x} + a\,x = 0.$$
(32)

Systém Volterra-Lotku

$$\dot{x}_1 = (a - b x_2) x_1, \dot{x}_2 = (-c + d x_1) x_2,$$
(33)

a, *b*, *c*, *d* > 0. Tento model popisuje vývoj populácií obetí (napr. zajacov) x_1 a dravcov (líšiek) x_2 . Všimnite si logiku rovníc. Ak neexistujú líšky ($x_2 = 0$), "počet" zajacov neohraničene narastá, ak nie sú prítomné zajace ($x_1 = 0$), "počet" líšok klesá, až kým nevymrú. Premenné x_1 a x_2 sú reálne, hoci počty môžu byť len celočíselné.

Úloha 20. Pomocou numerického výpočtu znázornite fázové trajektórie uvedených rovníc a systému Volterra-Lotku.

2.5. Zvláštny (divný) atraktor

Pri zvýšení dimenzie fázového priestoru na n = 3 sa môžeme stretnúť s dosiaľ nepoznaným typom atraktora, ktorý dostal názov **divný** (anglicky

strange) **atraktor**. E. N. Lorenz v roku 1963 ukázal, že sústava troch diferenciálnych rovníc prvého rádu, ktorá sa teraz nazýva *Lorenzov systém*:

$$\begin{aligned} \dot{x}_1 &= -\sigma \left(x_1 - x_2 \right), \\ \dot{x}_2 &= -x_1 \, x_3 + r \, x_1 - x_2, \\ \dot{x}_3 &= x_1 \, x_2 - b \, x_3, \end{aligned} \tag{34}$$

môže mať pre určité intervaly hodnôt σ , *r* a *b* riešenie, ktoré nie je periodické, pričom sa však hodnoty x_1 , x_2 a x_3 s časom menia ale zároveň ostávajú vo vnútri konečnej oblasti (PEKÁREK a KOLAŘÍK, 1991).

Na obrázku 6 sú znázornené časové priebehy jednotlivých zložiek vektora *x* a fázová trajektória Lorenzovho systému v priestore \mathbb{R}^3 . Ako vidieť, body *x* sa stále nachádzajú v okolí určitej množiny (Lorenzovho atraktora), pričom pohyb pripomína periodický tým, že sa body trajektórie neustále vracajú do tých istých miest. V skutočnosti sa poloha bodu nikdy nezopakuje. Zároveň sa v tomto systéme prejavuje citlivosť na začiatočné podmienky, keď dva veľmi blízke body sa od seba veľmi rýchlo vzďaľujú. Takéto správanie znemožňuje predpovedanie stavu systému na dlhšie časové obdobia.

Lorenzova sústava (34) je najstaršia a dnes aj najdôkladnejšie preskúmaná sústava rovníc s divným atraktorom. Lorenz ju zostavil zjednodušením Navierovych-Stokesovych parciálnych diferenciálnych rovníc prúdenia viskóznej tekutiny medzi dvomi plochami s rôznymi teplotami, ktoré aplikoval na popis vývoja počasia.

Koniec

Obr. 6: Časové priebehy jednotlivých zložiek a fázová trajektória Lorenzovho systému pri $\sigma = 10$, r = 25, b = 8/3 a $x(0) = (1, 0, 30)^T$

2.6. Spojité deterministické systémy s chaotickým správaním

Ako sme už spomínali vyššie, nie je možné dlhodobo predvídať správanie Lorenzovho systému, keď sa dva blízke začiatočné stavy od seba veľmi rýchlo vzďaľujú. Táto vlastnosť sa nazýva *citlivosť na začiatočné podmienky*. Napriek tomu, že tento systém je deterministický, popísaný jednoznačnými rovnicami, jeho správanie sa pripomína skôr zmätok ako pravidelnosť. Ukazuje sa (GRYGAR, 1991), že dokonca taký systém ako je slnečná sústava, kde sme zvyknutí na pravidelnosť a stálosť, je nutné zaradiť medzi chaotické.

Chaotické správanie autonómnych systémov môžeme skúmať tak, že riešime tieto systémy viacnásobne s veľmi blízkymi začiatočnými vektormi. Týmto môžeme modelovať poruchy, ktorým je každý reálny systém počas celej doby fungovania vystavený. Druhá možnosť je zaviesť "fluktuácie" do rovníc umelo, čím sa systém z autonómneho zmení na neautonómny. Lorenz objavil zvláštne správanie svojho systému (pri ktorom sa riešenie prepočítavalo v čase dopredu aj naspäť, aby sa overila jeho správnosť) tak, že ho opakovane spustil niekde zo stredu výpočtu, pričom ako začiatočné hodnoty nastavil výpis programu. Už táto nepresnosť — rozdiel výpisu a hodnôt v počítači — spôsobila, že riešenie sa mu po čase úplne zmenilo. Až po veľmi dlhom čase, keď sa pokúšal nájsť chybu v programe, si uvedomil, že "chyba" je v samotnom systéme.

Ukážme, k čomu vedie "vonkajší vplyv" na autonómny systém, reprezentovaný Duffingovou rovnicou s pravou stranou (DVOŘÁK a ŠIŠKA,

1991):

$$\ddot{x} + b\,\dot{x} - a\,x + x^3 = c\,\cos(d\,t). \tag{35}$$

Numerické riešenie je znázornené na obrázku 7. Pri menšej amplitúde c = 0.1 systém nabieha na "svoj" limitný cyklus. Pri väčšej hodnote amplitúdy c = 0.3 sa prejavuje chaotické správanie (hoci vonkajší vplyv je periodický!). Zrejme môžeme konštatovať, že systém už neodolal väčším poruchám.

Poznámka 2.5. Keď si všimnete časový priebeh a fázový portrét pri c = 0.3, možno si všimnete, že sa podobajú na odpovedajúce obrázky Lorenzovho atraktora (samozrejme keby sme vzali priemet jeho trajektórie na nejakú rovinu). Je to len náhoda?

Úloha 21. Pomocou numerického výpočtu skúmajte vplyv vonkajších porúch na ostatné rovnice 2. rádu, uvedené vyššie.

Príklad 15. Skúmajme vplyv "vonkajších fluktuácií" na činnosť neharmonického oscilátora tvoreného RLD obvodom (D znamená diódu), popísaného nasledujúcou diferenciálnou rovnicou (HEINRICHS, 1993):

$$\ddot{Q} + \frac{U_0}{L} \left(e^{Q/C_0 U_0} - 1 \right) + \frac{R}{L} \dot{Q} = \frac{U_e}{L} \cos(\omega t).$$

Riešenie. Na obrázku 8 sú znázornené fázové trajektórie neharmonického oscilátora v rovine napätie-prúd, pri rôznych "budiacich" amplitúdach U_e .

Obr. 7: Časové priebehy a fázové trajektórie Duffingovho systému pri a = 1, b = 0.25, d = 1 a $\mathbf{x}(0) = (1.1, 0)^T$ pri c = 0.1, resp. c = 0.3

Koniec

Koniec

Obr. 8: Fázové trajektórie v rovine (U, I) neharmonického oscilátora pri $U_e = 1.5, 1.9, 2.03$ a 2.2

Hodnoty boli: $R = 1 \Omega$, L = 1 H, $C_0 U_0 = 0.03 FV$, $U_0 = 1.2 V$, $\omega = 2\pi/s$; $-2V \le U \le 8V$; $-1 A \le I \le 1 A$.

Stretávame sa tu s javom, tzv. **zdvojenia cyklu**, s ktorým sa ešte stretneme v kapitole o diskrétnych dynamických systémoch. Pri zvyšovaní budiaceho napätia sa postupne z obyčajného cyklu stáva najprv cyklus dvojitý, neskôr štvoritý, atď. Pri ďalšom zvyšovaní napätia prechádza systém na chaotické správanie. Toto správanie si môžete overiť pomocou osciloskopu.

Uvedené príklady ukazujú, že sa skončila éra, keď sme mohli veriť Laplaceovmu citátu, uvedenému na začiatku tejto kapitoly. Aj keby sme pripustili, že presná znalosť *stavu* "systému Príroda" by snáď mohla stačiť na to, aby sme predpovedali našu budúcnosť (tu sa nachádzame skôr na pôde filozofie ako fyziky), vidíme, že aj nepatrná nepresnosť pri určovaní tohoto *stavu* spôsobí úplnú zmenu "predpovede".

Poznámka 2.6. Pripravovateľ rubriky *Počítače a Internet* (MYSLÍK, 2003) časopisu Praktická elektronika – A Radio popisuje činnosť programu *Brain-Wave Generator*, určeného na **zmenu frekvencie mozgových vĺn** privedením dvoch tónov s rozdielnym kmitočtom do uší, čo vraj umožňuje osvieženie, relaxáciu, uspávanie, a pod. Program sa dá stiahnuť na http: //www.bwgen.com. O teoretickom pozadí výskumu *The Monroe Institute* sa dá dočítať na stránke http://www.monroe-inst.com.

Poznámka 2.7. O aplikáciách informačných technológií v zložitých systémoch nájde čitateľ informáciu v knihe (MADARÁSZ, 2004).

... systém sa môže nachádzať vo veľkom počte stabilných a nestabilných režimov. "Historická" trajektória, po ktorej sa rozvíja evolúcia systému pri zväčšovaní riadiaceho parametra, je charakterizovaná striedaním stabilných oblastí, v ktorých dominujú deterministické zákony, s nestabilnými oblasťami v blízkosti **bifurkačných bodov**, kde sa pred systémom otvára možnosť výberu jedného z niekoľkých variantov budúcnosti. Aj deterministický charakter kinetických rovníc, umožňujúci dopredu určiť množinu možných stavov a určiť ich relatívnu stabilitu, aj náhodné **fluktuácie**, "vyberajúce" jeden z niekoľkých možných stavov v blízkosti bifurkačného bodu, sú tesne prepojené. Táto **zmes nutnosti a náhodnosti** vytvára "históriu" systému.

PRIGOGINE *a* STENGERS (1984).

3. Bifurkácie

Vlastnosti dynamických systémov (MEDVEĎ, 1988; BRUNOVSKÝ a MEDVEĎ, 1982) závisia od rôznych parametrov, ako sú napríklad teplota a tlak pri chemickej reakcii. Hodnoty parametrov, pri ktorých sa kvalitatívne menia vlastnosti dynamického systému (napríklad počet stacionárnych riešení, zmena stability alebo prechod od jediného stacionárneho riešenia ku limitnému cyklu) sa nazývajú bifurkačné. V tejto kapitole sa stručne zoznámime s teóriou bifurkácií.

3.1. Bifurkácie v jednorozmerných dynamických systémoch

Uvažujme dynamický systém popisovaný autonómnou diferenciálnou rovnicou

$$\dot{x} = f(\mu, x), \tag{36}$$

kde μ je reálny parameter a $x \in \mathbb{R}$ je stavová premenná.

Rovnica (36) môže (ale nemusí) mať pri danej hodnote parametra μ stacionárne body. Tie sú riešením rovnice

$$f(\mu, x) = 0.$$
 (37)

Rovnica (37) je vlastne implicitné zadanie "krivky" v rovine $\mu \times x$.

Príklad 16. Uvažujme diferenciálnu rovnicu $\dot{x} = x^2 + \mu^2 + 1$. Vyšetrime jej stacionárne body v závislosti na hodnote parametra μ .

Riešenie. Podmienka stacionárneho bodu má tvar

$$f(\mu, x) = x^2 + \mu^2 + 1 = 0 \quad \Leftrightarrow \quad x^2 + \mu^2 = -1.$$

Je zrejmé, že pre žiadnu hodnotu μ neexistuje stacionárny bod. Všimnime si správanie tohoto dynamického systému. Keďže derivácia je stále kladná, pri ľubovoľnej začiatočnej hodnote x_0 bude x neohraničene narastať. Ľahko sa integrovaním presvedčíme, že riešenie má tvar

$$x(t) = \sqrt{\mu^2 + 1} \operatorname{tg}(\sqrt{\mu^2 + 1}(t + C)),$$

Domovská stránka

Titulná strana Obsah •• Strana 83 z 348 Späť Celá strana Zatvoriť Koniec

kde integračná konštanta $C = \frac{1}{\sqrt{\mu^2 + 1}} \operatorname{arctg} \frac{x_0}{\sqrt{\mu^2 + 1}}$. Vidíme, že *x* narastá do nekonečna za konečný čas t_{\max} :

$$t_{\max} = \frac{\pi}{2\sqrt{\mu^2 + 1}} \left(1 - \frac{2}{\pi} \operatorname{arctg} \frac{x_0}{\sqrt{\mu^2 + 1}} \right).$$

Ak zvolíme $x_0 = 0$, dostaneme $t_{max} = \pi/(2\sqrt{\mu^2 + 1})$. Je zrejmé, že zväčšovanie absolútnej hodnoty parametra μ má za následok "skracovanie aktívneho života" dynamického systému, ale kvalitatívny obrázok systému sa nemení. Rovnica nemá žiadne bifurkačné parametre.

Príklad 17. Uvažujme diferenciálnu rovnicu $\dot{x} = x^2 + \mu^2 - 1$. Vyšetrime jej stacionárne body v závislosti na hodnote parametra μ .

Riešenie. Podmienka stacionárneho bodu má tvar

 $f(\mu, x) = x^2 + \mu^2 - 1 = 0 \quad \Leftrightarrow \quad x^2 + \mu^2 = 1.$

Grafom tejto rovnice v rovine $\mu \times x$ je jednotková kružnica. Pre $|\mu| > 1$ rovnica zrejme nemá žiadne stacionárne body. Riešenie má rovnaký tvar ako riešenie predchádzajúcej rovnice, len treba $\sqrt{\mu^2 + 1}$ nahradiť pomocou $\sqrt{\mu^2 - 1}$. Zväčšovanie absolútnej hodnoty parametra μ má znova za následok "skracovanie aktívneho života" dynamického systému.

V bode $\mu = -1$ nastáva zmena, rovnica ($\dot{x} = x^2$) má stacionárny bod $x_s = 0$. Tento je polostabilný (narčtnite diagram), ak bude $x_0 < 0$, bude

$$\begin{array}{c} \bigoplus \\ -\sqrt{1-\mu^2} \\ \sqrt{1-\mu^2} \end{array}$$

Obr. 9: Fázový portrét rovnice $\dot{x} = (x + \sqrt{1 - \mu^2})(x - \sqrt{1 - \mu^2})$

 $x(t) = \frac{-1}{t - 1/x_0}$ konvergovať k 0 pri $t \to \infty$. Pre $x_0 > 0$ bude $x(t) \to \infty$ pri $t \to 1/x_0$.

Pri ďalšom zväčšovaní hodnoty parametra μ má rovnica **dva** stacionárne body — $x_{s_{1,2}} = \pm \sqrt{1 - \mu^2}$ — ktoré sa od seba vzďalujú, kým μ nedosiahne hodnotu 0 a potom sa znova približujú, až sa pre $\mu = 1$ zlejú do jedného stacionárneho bodu. Pre $|\mu| < 1$ sa dá rovnica napísať v tvare

$$\dot{x} = (x + \sqrt{1 - \mu^2})(x - \sqrt{1 - \mu^2})$$

čomu odpovedá fázový portrét, znázornený na obrázku 9. Ako obyčajne, znamienka nad jednotlivými intervalmi sú znamienka funkcie $f(\mu, x)$ a šípky ukazujú smer zmeny hodnoty premennej *x* pri rastúcom čase.

Ako vidieť, jeden stacionárny bod (ľavý) je stabilný a druhý je nestabilný. Tento jav nie je náhodný. Riešenie sa dá zapísať v tvare:

$$x(t) = \sqrt{1-\mu^2} \frac{x_0 + \sqrt{1-\mu^2} + (x_0 - \sqrt{1-\mu^2})\exp(2t\sqrt{1-\mu^2})}{x_0 + \sqrt{1-\mu^2} - (x_0 - \sqrt{1-\mu^2})\exp(2t\sqrt{1-\mu^2})}.$$

Rovnica má teda dva bifurkačné parametre — $\mu = -1$ a $\mu = 1$. Na obrázku 10 sú vyznačené stacionárne body v závislosti na hodnote para-

metra μ , čiarkovane sú vyznačené nestabilné body, plnou čiarou stabilné. Pri hodnotách $\mu = \pm 1$ je stacionárny bod x = 0 polostabilný. Dotyčnica ku načrtnutej kružnici pri $\mu = \pm 1$ je rovnobežná s osou premennej x (derivácia $dx/d\mu|_{\mu=\pm 1} = \pm \infty$).

Poznámka 3.1. Názov **bifurkácia** pochádza z angličtiny a znamená **rozdvojenie** alebo **rozvetvenie**. Ako je vidieť na obrázku 10, v bodoch $\mu = \pm 1$ sa krivka stacionárnych bodov rozdelila na dve časti — hornú nestabilnú a spodnú stabilnú. V tomto prípade pri hodnotách $|\mu| > 1$ krivka neexistovala, začala pri $\mu = -1$ zľava, resp. pri $\mu = 1$ zprava.

3.1.1. Veta o implicitnej funkcii

V predmete Matematická analýza sme sa už stretli s nasledujúcou vetou.²

Veta (o implicitnej funkcii). Nech $f(\mu_0, x_0) = 0$ a nech f je spojite diferencovateľná v nejakej otvorenej oblasti roviny (μ, x) , obsahujúcej bod (μ_0, x_0) . Potom ak sa parciálna derivácia $f'_x(\mu_0, x_0) \neq 0$, tak existujú $\alpha > 0$ a $\beta > 0$ také, že:

(1) Rovnica $f(\mu, x) = 0$ má jediné riešenie $x = x(\mu)$ pri $\mu_0 - \alpha < \mu < \mu_0 + \alpha$ také, že $x_0 - \beta < x_0 < x_0 + \beta$.

(2) Funkcia $x(\mu)$ je spojite diferencovateľná pri $\mu_0 - \alpha < \mu < \mu_0 + \alpha$. (3) $x'_{\mu} = -f'_{\mu}(\mu, x(\mu))/f'_{x}(\mu, x(\mu))$.

²Nasledujúce oddiely sú spracované podľa knihy (IOOSS a JOSEPH, 1980).

Dôkaz. Dá sa nájsť v učebniciach matematickej analýzy.

Poznámka 3.2. Ak sa $f'_{\mu}(\mu_0, x_0) \neq 0$, rovnica $f(\mu, x) = 0$ sa dá vyriešiť vzhľadom na $\mu(x)$.

Poznámka 3.3. Analogická veta sa dá dokázať v prípade viacerých premenných a viacerých rovníc.

3.1.2. Klasifikácia bodov kriviek $f(\mu, x) = 0$

Na základe vlastností funkcie $f(\mu, x)$ sa dajú body krivky $f(\mu, x) = 0$ (body vyhovujúce implicitnému zadaniu) roztriediť nasledujúcim spôsobom:

(1) **Regulárny bod** je bod, v ktorom platí

 $f'_{\mu} \neq 0$ alebo $f'_{x} \neq 0$.

Existuje jediná krivka $\mu = \mu(x)$ alebo $x = x(\mu)$, prechádzajúca týmto bodom. (Také sú všetky body kružnice na obrázku 10.)

(2) Extremálny regulárny bod je bod, v ktorom derivácia $\mu'_x(x)$ mení znak a $f'_{\mu}(\mu, x) \neq 0$. (Také sú obidva body (-1, 0) a (1, 0) na obrázku 10.)

(3) Singulárny (zvláštny) je taký bod, v ktorom platí

$$f'_{\mu}=f'_{x}=0.$$

(4) **Dvojitý bod** je **singulárny** bod, ktorým prechádzajú práve dve vetvy uvažovanej krivky, ktoré majú **rôzne dotyčnice**. Budeme predpokladať, že druhé parciálne derivácie funkcie *f* sa nerovnajú nule zároveň.

Domovská stránka
Titulná strana
Obsah
••
Strana 87 z 348
Späť
Celá strana
Zatvoriť
Koniec

(5) **Extremálny singulárny (dvojitý) bod** je bod, v ktorom derivácia $\mu'_x(x)$ mení znak na jednej vetve.

(6) **Bod návratu** je bod dotyku druhého rádu, keď majú obidve vetvy spoločnú dotyčnicu.

(7) **Združený bod** je izolované bodové riešenie rovnice $f(\mu, x) = 0$.

(8) **Singulárny bod vyššieho rádu** je bod, v ktorom sa všetky tri druhé parciálne derivácie funkcie *f* rovnajú nule.

Príklad 18. Vyšetrime správanie riešenia nasledujúcej rovnice v závislosti na hodnote parametra μ :

 $\dot{x} = 3x - x^3 + \mu.$

Riešenie. Z rovnice $f(\mu, x) = 3x - x^3 + \mu = 0$ sa dá vyjadriť premenná μ v závislosti na hodnote x. Graf implicitne zadanej krivky $3x - x^3 + \mu = 0$ vidíte na hornom obrázku 11. Vzhľadom na to, že $f'_{\mu} \equiv 1 \neq 0$, nemôže mať daná krivka žiaden singulárny bod. Keďže $f'_{x} = 3 - 3x^2$, má táto krivka práve dva *extremálne regulárne* body $(\mu_1, x_1) = (-2, 1)$ a $(\mu_2, x_2) = (2, -1)$ $(f'_{x}(\mp 2, \pm 1) = 0$ — na obrázku sú to body, kde plná krivka prechádza na čiarkovanú). Čo sa deje s riešením pri prechode hodnoty μ cez hodnoty -2 a 2? Stacionárne body na krivke v častiach, vyznačených plnými čiarami sú stabilné (overte to!), na čiarkovanej časti sú nestabilné. Keď bude najprv hodnota parametra $\mu < -2$, napríklad $\mu = -3$, potom pri tejto hodnote parametra existuje jediný stacionárny bod x. Pri prechode μ cez hodnotu -2 sa počet stacionárnych bodov zvyšuje na 3, z ktorých sú dva

Koniec

Obr. 11: Zmena typu stability v extremálnom regulárnom bode

krajné stabilné a prostredný je nestabilný. Ak by sme riešili diferenciálnu rovnicu pri plynulej zmene parametra, ostalo by riešenie v blízkosti pôvodného stacionárneho bodu, ktorý bol stabilný. Pri prechode μ cez hodnotu 2 sa počet stacionárnych bodov znovu zmení na jeden. Avšak pôvodný stacionárny bod zanikol a preto sa riešenie (pri nezmenenej hodnote μ) dostane ku stacionárnemu bodu, ktorý sa nachádza inde (tento prechod je vyznačený čiarkovane šípkou dohora). V takomto prípade môžeme hovoriť o *tvrdej* zmene stability, keď sa riešenie mení prakticky skokom. Pri ďalšom zväčšovaní hodnoty parametra μ by sa už nedialo nič zaujímavé. Naopak, pri jeho zmenšovaní, by sme pri spätnom prechode cez hodnotu $\mu = -2$ boli znova svedkami "zmiznutia" stacionárneho bodu a prechodu riešenia na nový stacionárny bod (tento prechod je vyznačený čiarkovane šípkou dolu). V spodnej časti obrázku 11 je znázornené numerické riešenie rovnice

$$\dot{x} = 3x - x^3 + 3\cos(t/5)$$

kde posledným členom modelujeme zmenu parametra μ . Bifurkačné hodnoty parametra $\mu = \pm 2$ sú vyznačené vodorovnou čiarou na spodnom obrázku, spolu s priebehom $\mu(t)$. Vidíme, že *x* sa skutočne mení približne tak, ako sme to uvádzali, pravdaže na zmenu situácie reaguje oneskorene.

3.1.3. Dvojité singulárne body

Medzi uvedenými singulárnymi bodmi majú zvláštne postavenie dvojité body. Uvažujme singulárny stacionárny bod (μ_0 , x_0). Potom krivky stacio-

nárnych bodov prechádzajúce týmto bodom musia vyhovovať rovnici

$$2f(\mu, x) = f_{\mu\mu}''(\Delta\mu)^2 + 2f_{\mu x}''\Delta\mu\,\Delta x + f_{xx}''(\Delta x)^2 + o[(|\Delta\mu| + |\Delta x|)^2] = 0,$$
(38)

kde $\Delta \mu = \mu - \mu_0$, $\Delta x = x - x_0$, $f''_{\mu\mu} = f''_{\mu\mu}(\mu_0, x_0)$, atd'. Ak necháme konvergovať $(\mu, x) \rightarrow (\mu_0, x_0)$, prejde rovnica (38) na tvar

$$f_{\mu\mu}^{\prime\prime}(\mathrm{d}\mu)^2 + 2f_{\mu x}^{\prime\prime}\mathrm{d}\mu\,\mathrm{d}x + f_{xx}^{\prime\prime}(\mathrm{d}x)^2 = 0.$$
(39)

Označme diskriminant $D = (f''_{\mu x})^2 - f''_{\mu \mu} f''_{xx}$. Potom na základe (39) môžeme napísať

$$\left[\frac{\mathrm{d}\mu}{\mathrm{d}x}\Big|_{x_0}\right]_{1,2} = -\frac{f_{\mu x}''}{f_{\mu \mu}''} \pm \sqrt{\frac{D}{f_{\mu \mu}''}^2} \tag{40}$$

alebo

$$\left[\frac{\mathrm{d}x}{\mathrm{d}\mu}\Big|_{\mu_0}\right]_{1,2} = -\frac{f_{\mu x}''}{f_{xx}''} \mp \sqrt{\frac{D}{f_{xx}''^2}}.$$
(41)

Zaujíma nás len prípad D > 0 (prečo?) a ďalej môžeme uvažovať nasledujúce prípady:

(A) D > 0, f''_{µµ} ≠ 0 — vtedy existujú dve rôzne dotyčnice ku krivke f(µ, x) = 0 v bode (µ₀, x₀) s tangensami uhlov [dµ/dx)](x₀)_{1,2}.
(B) D > 0, f''_{µµ} = 0 — vtedy f''_{µx} ≠ 0, dx[2 f''_{µx}dµ + f''_{xx}dx] = 0 (42)

a existujú dve rôzne dotyčnice ku krivke $f(\mu, x) = 0$ v bode (μ_0, x_0) s tangensami uhlov $x'_{\mu}(\mu_0) = 0$ a $\mu'_x(x_0) = -f''_{xx}/2f''_{\mu x}$.

V prípade D > 0 teda v okolí bodu (μ_0, x_0) existujú dve rôzne krivky, definované implicitným zadaním $f(\mu, x) = 0$. V prípade (A) sú to dve krivky $\mu^{(1)}(x)$ a $\mu^{(2)}(x)$, v prípade (B) sú to krivky $x^{(1)}(\mu)$ (pre ktorú je $x^{(1)}{}'_{\mu}(\mu) = 0$) a $\mu^{(2)}(x)$.

V knihe (IOOSS a JOSEPH, 1980) je na strane 28 uvedená Veta 2 z ktorej vyplýva, že v obidvoch prípadoch (A) aj (B) pri prechode parametra μ cez hodnotu μ_0 dochádza ku zmenám typu stability odpovedajúcich stacionárnych bodov $x(\mu)$, pričom zmeny môžu byť len také, aké sú znázornené na obrázku 12. Plnou čiarou sú vyznačené stabilné, čiarkovanou nestabilné stacionárne body. Teda hodnota μ_0 je bifurkačná hodnota.

V nasledujúcich kapitolách sa stretneme práve s prípadom, keď pri narastajúcej hodnote parametra μ sa pri prechode hodnotou μ_0 jediný stabilný stacionárny bod nahradí trojicou bodov, z ktorých dva budú stabilné a jeden nestabilný. V diskrétnom prípade vzniká tzv. zdvojenie periódy, keď sa jeden pevný bod zobrazenia $f^{[2]}$ "roztrojí" — vtedy môžeme hovoriť tiež o *bifurkácii zrodu cyklu*. Keďže sa pôvodný stacionárny bod zobrazení fa $f^{[2]}$ zmení na nestabilný, jeho "vetvu" pri vykresľovaní bifurkačných diagramov nevidíme. To môže viesť k názoru, že počet stacionárnych bodov sa zdvojnásobil. Domovská stránka Titulná strana Obsah •• Strana 92 z 348 Späť Celá strana Zatvoriť Koniec

3.2. Bifurkácie v dvojrozmerných dynamických systémoch

Už pri skúmaní bifurkácií v jednoparametrickom jednorozmernom prípade môže nastať veľké množstvo situácií. Pri prechode na vyššie dimenzie sa situácia môže len skomplikovať. Preto v tejto časti budeme postupovať "skromnejšie". Uvedieme vetu, ktorá predstavuje jeden z najzaujímavejších výsledkov a ilustrujeme ju na príkladoch.

Veta (o Hopfovej bifurkácii). Nech systém s jedným parametrom

$$\dot{x}_1 = f_1(\mu, x_1, x_2), \dot{x}_2 = f_2(\mu, x_1, x_2),$$
(43)

má stacionárny bod v začiatku súradnicovej sústavy $\mathbf{x} = \mathbf{0}$ pre všetky hodnoty reálneho parametra μ . Ďalej nech pri $\mu = \mu_0$ sú vlastné hodnoty $\lambda_1(\mu)$, $\lambda_2(\mu)$ linearizovanej sústavy rýdzoimaginárne. Ak pre reálne časti vlastných hodnôt platí podmienka $(d/d\mu)$ {Re[$\lambda_{1,2}(\mu)$]}| $_{\mu=\mu_0} > 0$ a bod **0** je **asymptoticky stabilný** stacionárny bod pri $\mu = \mu_0$, potom platí:

- a) $\mu = \mu_0$ je *bifurkačná* hodnota systému;
- b) existuje taký interval (μ_1, μ_0) , že pri $\mu \in (\mu_1, \mu_0)$ je začiatok súradníc stabilné ohnisko;
- c) existuje taký interval (μ_0, μ_2) , že pri $\mu \in (\mu_0, \mu_2)$ je začiatok súradníc nestabilné ohnisko obkľúčené *limitným cyklom*, ktorého rozmer narastá pri narastaní μ .

Dôkaz. Veta je uvedená v knihe (ARROWSMITH a PLACE, 1982), kde sa tiež píše, že dôkaz vychádza za rámec knihy. ■

Poznámka 3.4. Uvedený jav sa zvykne tiež nazývať *Hopfova bifurkácia zrodu cyklu* alebo aj *mäkká strata stability* rovnovážneho bodu systému asi aj preto, že rozmer limitného cyklu je rádovo $\sqrt{\varepsilon}$, ak je $\varepsilon = \mu - \mu_0$ vzdialenosť parametra od bifurkačnej hodnoty. Teda zmenou vonkajších podmienok

(parametra) sa dá dosiahnuť to, že systém "ožije" (objavia sa kmity). Kmity vznikajú nielen v mechanike, ale aj iných oblastiach, napríklad v chémii.

Príklad 19. Dokážme, že sústava s parametrom

$$\dot{x}_1 = \mu \, x_1 - 2 \, x_2 - 2 \, x_1 \, (x_1^2 + x_2^2)^2, \dot{x}_2 = 2 \, x_1 + \mu \, x_2 - x_2 \, (x_1^2 + x_2^2)^2,$$
(44)

má Hopfovu bifurkáciu pri hodnote parametra $\mu = 0$.

Riešenie. Je potrebné overiť splnenie podmienok vety o Hopfovej bifurkácii. Matica linearizovanej sústavy je $\begin{bmatrix} \mu & -2 \\ 2 & \mu \end{bmatrix}$ a má vlastné hodnoty $\lambda_{1,2} = \mu \pm 2$ i. Pri $\mu = 0$ sú teda vlastné hodnoty linearizovanej sústavy rýdzoimaginárne. Derivácia reálnych zložiek vlastných hodnôt podľa parametra μ je rovná 1. Ďalej je zrejmé, že bod **0** je stacionárny pre všetky hodnoty parametra μ . Ostáva overiť splnenie jeho asymptotickej stability pri $\mu = 0$.

Úloha 22. Pomocou funkcie Ljapunova $V(x_1, x_2) = x_1^2 + x_2^2$ overte, že pri $\mu = 0$ je nulové riešenie sústavy (44) asymptoticky stabilné.

Príklad 20. Určme bifurkačné hodnoty Van der Polovej rovnice

 $\ddot{x} + \mu \left(x^2 - 1 \right) \dot{x} + x = 0.$

Domovská stránka
Titulná strana
Obsah
• •
Strana 96 z 348
Späť
C K A
Cela strana
Zatvoriť
Koniec

Riešenie. Rovnicu napíšeme v tvare sústavy

$$\dot{x}_1 = x_2,$$

 $\dot{x}_2 = -x_1 - \mu (x_1^2 - 1) x_2.$
(45)

Matica linearizovanej sústavy je $\begin{bmatrix} 0 & 1 \\ -1 & \mu \end{bmatrix}$ a jej charakteristická rovnica

je $\lambda^2 - \mu \lambda + 1 = 0$. Vidíme, že pri záporných μ bude začiatok asymptoticky stabilný a pri kladných μ bude nestabilný. Preto je $\mu = 0$ bifurkačná hodnota. Vlastné hodnoty $\lambda_{1,2} = (\mu \pm \sqrt{\mu^2 - 4})/2$. V bode $\mu = 0$ sú teda splnené všetky podmienky vety o Hopfovej bifurkácii s výnimkou asymptotickej stability nulového riešenia pri $\mu = 0$.

Úloha 23. Aký typ stability má Van der Polova sústava pri $\mu = 0$? Numerickým riešením overte, že aj pri nesplnení podmienky asymptotickej stability, vzniká aj pri Van der Polovej rovnici limitný cyklus.

Úloha 24. Zobrazte fázové portréty sústavy s parametrom danej rovnicami $\dot{x}_1 = \mu x_1$, $\dot{x}_2 = -x_2$ pri záporných, nulovej a kladných hodnotách parametra μ .

Ďalšie podrobnosti môžete nájsť, napríklad, v knihách (ARROWSMITH a PLACE, 1982; IOOSS a JOSEPH, 1980; KAHN, 1989).

Celá veda je zapísaná v tejto ohromnej knihe — mám na mysli Vesmír, — ktorá je pre nás vždy otvorená, ale ktorú nie je možné pochopiť, bez naučenia sa rozumieť reči, v ktorej je napísaná. A napísaná je v jazyku matematiky, jej písmenami sú trojuholníky, kružnice a ďalšie geometrické tvary, bez ktorých človek nie je schopný pochopiť čo len jedno jej slovo; bez nich sa vždy podobá na blúdiaceho v tme.

Galileo Galilei, 1623 (PEITGEN a RICHTER, 1986).

4. Množiny a zobrazenia

V tejto kapitole, spracovanej najmä podľa knihy (CROWNOVER, 1995), uvedieme definície niektorých pojmov teórie množín a zobrazení, ktoré využijeme v ostatných častiach. Niektoré tvrdenia dokážeme najmä preto, aby sa čitateľ zoznámil so spôsobom uvažovania, charakteristickým pre túto oblasť matematiky.

4.1. Metrické priestory, konvergencia a úplnosť

Uvažujme ľubovoľnú množinu X. Ak má množina X viac prvkov, je užitočné zaviesť nejaký spôsob na meranie ich *"odlišnosti"* alebo *vzdialenosti.* Z praxe vznikli niektoré požiadavky, ktorým by malo toto meranie vyhovovať a práve tieto požiadavky sa stali základom nasledujúcej definície *metriky*.

Definícia 17. Metrikou na množine *X* sa nazýva reálna funkcia d(x, y), definovaná na karteziánskom súčine $X \times X$ a spĺňajúca nasledujúce axiómy:

- $d(x, y) \ge 0$ pre všetky $x, y \in X$;
- d(x, y) = 0 práve vtedy ak x = y;
- d(x, y) = d(y, x);
- $d(x, y) \leq d(x, z) + d(z, y)$ pre všetky $x, y, z \in X$ (trojuholníková nerovnosť).

Poznámka 4.1. Porozmýšľajte, čo znamenajú tieto axiómy v bežnej praxi.

Definícia 18. Dvojica (X, d) sa nazýva **metrický priestor**.

Príklad 21. (\mathbb{R} , *d*), kde d(x, y) = |x - y| je metrický priestor.

Príklad 22. (\mathbb{R}^n , d_1), kde $d_1(x, y) = \sum_{k=1}^n |x_k - y_k|$, $x = (x_1, \dots, x_n)$, $y = (y_1, \dots, y_n)$, je metrický priestor. Táto metrika sa najmä v priestore \mathbb{R}^2 nazýva *manhattanská* — prečo asi?

Príklad 23. (\mathbb{R}^n , d_2), kde $d_2(x, y) = \sqrt{\sum_{k=1}^n |x_k - y_k|^2}$, je metrický priestor. Táto metrika je nám dobre známa *euklidovská* metrika.

Domovská stránka
Titulná strana
Obsah
Strana 99 z 348
Späť
Celá strana
Zatvoriť
Koniec

Príklad 24. (\mathbb{R}^n , d_∞), kde $d_\infty(x, y) = \max_{1 \le k \le n} |x_k - y_k|$, je metrický priestor. Táto metrika sa nazýva *maximum* metrika.

Príklad 25. Nech X = V je ľubovoľná konečná množina bodov – vrcholov súvislého neorientovaného grafu. Ďalej nech *H* je množina hrán, spájajúcich vrcholy množiny *V*. Z predpokladu súvislosti vyplýva, že medzi každými dvoma bodmi *V* existuje *spojenie* po hranách množiny *H*. Potom $d(v_1, v_2) = \{minimálny počet hrán, ktoré musíme prejsť, aby sme sa$ $z vrcholu <math>v_1$ dostali do vrcholu $v_2\}$ je metrika na *X*.

Úloha 25. Dokážte, že funkcia *d* z príkladu 25 spĺňa axiómy metriky.

Poznámka 4.2. Existujú aj pojmy *normovaný* priestor a *euklidovský* priestor so skalárnym súčinom. Každý euklidovský priestor sa dá chápať ako normovaný priestor a každý normovaný priestor je možné ďalej chápať ako metrický priestor. Pojem metrického priestoru je teda všeobecnejší. Ešte všeobecnejší je pojem *topologického* priestoru.

Pojem metriky je veľmi užitočný a slúži ako základ na definovanie d'alších pojmov, ku ktorým teraz pristupujeme. Ďalej budeme predpokladať, že operujeme v nejakom metrickom priestore (X, d).

Predpokladáme, že čitateľ má už svoje predstavy o tom, čo je **prvok** (**bod**) množiny, **prienik** a **zjednotenie** množín.

Definícia 19. Doplnkom množiny *A* do množiny *X* nazývame množinu $X \setminus A$ tých prvkov množiny *X*, ktoré nepatria do *A*.

De Morganove pravidlá sa dajú zapísať v tvare:

 $X \setminus (A \cup B) = (X \setminus A) \cap (X \setminus B),$ $X \setminus (A \cap B) = (X \setminus A) \cup (X \setminus B)$

a platia aj pre l'ubovol'né zjednotenia a prieniky množín

 $X \setminus \cup \mathcal{I} = \cap \{ (X \setminus E) : E \in \mathcal{I} \}, \\ X \setminus \cap \mathcal{I} = \cup \{ (X \setminus E) : E \in \mathcal{I} \}.$

Definícia 20. Množinu $G_r(s) = \{x \in X : d(x,s) < r\}$ budeme nazývať otvorenou guľou so stredom *s* a s polomerom *r*.

Poznámka 4.3. $G_r(s)$ sa zvykne tiež nazývať *r*-okolie bodu *s* a označuje sa ako $\mathcal{O}_r(s)$.

Definícia 21. Množina *A* sa nazýva otvorenou, ak pre každý bod $x \in A$ existuje také okolie $\mathcal{O}_r(x)$, ktoré celé patrí do $A: \mathcal{O}_r(x) \subseteq A$.

Definícia 22. Ľubovoľná otvorená množina, obsahujúca bod *x*, sa nazýva **okolie bodu** *x*.

Poznámka 4.4. Pri overovaní otvorenosti množiny sa môže použiť okolie namiesto *r*-okolia.

Domovská stránka
Titulná strana
Obsah
•• >>
Strana 101 z 348
Späť
Celá strana
Zatvoriť
Koniec

Definícia 23. Doplnok bodu *x* v jeho okolí, budeme nazývať **prstencové okolie bodu** *x*.

Poznámka 4.5. Prstencové okolie je teda okolie, bez samotného bodu *x*.

Veta. Zjednotenie ľubovoľného počtu otvorených množín je otvorená množina.

Dôkaz. Označme $\mathcal{Z} = \bigcup_{\alpha} E_{\alpha}$, kde E_{α} sú otvorené množiny. Vezmime ľubovoľný prvok $x \in \mathcal{Z}$. Potom tento prvok patrí do niektorej z množín E_{α} , napríklad do E_{α^*} . Keďže E_{α^*} je otvorená, spolu s prvkom x obsahuje aj nejaké jeho okolie $\mathcal{O}(x)$. Teda $\mathcal{O}(x) \subseteq E_{\alpha^*} \subseteq \mathcal{Z}$, preto aj množina \mathcal{Z} obsahuje spolu s ľubovoľným svojim prvkom aj nejaké jeho okolie, a teda je otvorená.

Veta. Prienik konečného počtu otvorených množín je otvorená množina.

Príklad 26. Uvažujme množinu intervalov $I_k = (-1/k, 1/k), k \in \mathbb{N}$. Potom $\bigcap_{k=1}^{\infty} I_k = \{0\}$. Tento príklad ukazuje, že prienik nekonečného počtu otvorených množín (I_k sú otvorené) nemusí byť otvorená množina.

Definícia 24. Priemerom alebo **diametrom** množiny *A* sa nazýva hodnota

diam $(A) = \delta(A) = \sup\{d(x, y) : x, y \in A\}.$

Definícia 25. Množina *A* sa nazýva **ohraničenou** práve vtedy, ak platí diam $(A) < \infty$.

Definícia 26. Postupnosť $\{x_n\}_{n=1}^{\infty}$ prvkov priestoru (X, d) **konverguje** k bodu $x^* \in X$ práve vtedy, ak pre každé $\varepsilon > 0$ existuje taký index $N(\varepsilon) \in \mathbb{N}$, že pre všetky indexy $n > N(\varepsilon)$ platí

$$d(\boldsymbol{x}_n, \boldsymbol{x}^*) < \varepsilon,$$

čo zapisujeme tiež $\lim_{n \to \infty} x_n = x^*$ alebo $x_n \to x^*$.

Poznámka 4.6. Konvergencia je "intímna" vlastnosť danej metriky. Tá istá postupnosť môže v jednej metrike konvergovať a v inej nie!

Definícia 27. Postupnosť $\{x_n\}_{n=1}^{\infty}$ prvkov priestoru (X, d) budeme nazývať **fundamentálnou** alebo **Cauchyovskou** práve vtedy, ak pre každé $\varepsilon > 0$ existuje taký index $N(\varepsilon) \in \mathbb{N}$, že pre všetky indexy $m, n > N(\varepsilon)$ platí

$$d(\mathbf{x}_n,\mathbf{x}_m)<\varepsilon$$

Definícia 28. Metrický priestor (X, d) sa nazýva **úplný** práve vtedy, ak každá fundamentálna postupnosť konverguje, teda ak pre každú fundamentálnu postupnosť $\{x_n\}_{n=1}^{\infty}$ existuje také $x^* \in X$, že $\lim_{n \to \infty} x_n = x^*$.

Veta (o úplnosti priestoru \mathbb{R}^n). Priestor \mathbb{R}^n s ľubovoľnou metrikou definovanou vyššie (prípadne s inou im ekvivalentnou metrikou) je úplný.

Definícia 29. Množina $A \subseteq X$ sa nazýva **uzavretá** práve vtedy, ak z $\lim_{n\to\infty} x_n = x^*$ vyplýva, že $x^* \in A$.

Poznámka 4.7. Uzavretá množina teda obsahuje limitné body všetkých svojich konvergentných postupností, teda pomocou limitného prechodu nemôžeme odísť mimo množiny *A*.

Poznámka 4.8. Tá istá množina *A* môže byť uzavretá v priestore (X, d_1) a súčasne neuzavretá v priestore (X, d_2) . Takéto situácie môžu nastať v priestoroch funkcií, ktoré majú nekonečnú dimenziu.

Veta. Prienik ľubovoľného počtu uzavretých množín je uzavretá množina.

Dôkaz. Označme $\mathcal{Z} = \bigcap_{\alpha} E_{\alpha}$, kde všetky E_{α} sú uzavreté množiny. Vezmime ľubovoľnú konvergentnú postupnosť $\{x_n\}_{n=1}^{\infty} \subset \mathcal{Z}$ a označme $\lim_{n \to \infty} x_n = x^* \in X$. Potom táto postupnosť $\{x_n\}_{n=1}^{\infty}$ patrí každej množine E_{α} . Keďže je konvergentná a E_{α} sú všetky uzavreté, platí, že $x^* \in E_{\alpha}$. Teda $x^* \in \mathcal{Z} = \bigcap_{\alpha} E_{\alpha}$. Preto je aj množina \mathcal{Z} uzavretá.

Veta. Zjednotenie konečného počtu uzavretých množín je uzavretá množina.

Príklad 27. Uvažujme množinu intervalov $I_k = \langle 0, 1 - 1/k \rangle, k \in \mathbb{N}$. Potom $\bigcup_{k=1}^{\infty} I_k = \langle 0, 1 \rangle$. Tento príklad ukazuje, že zjednotenie nekonečného počtu uzavretých množín (I_k sú uzavreté) nemusí byť uzavretá množina.

Veta . Množina $A \subseteq X$ je uzavretá práve vtedy, ak je množina $X \setminus A$ otvorená.

Príklad 28. Prázdna množina $\emptyset \subset X$ a množina X sú **otvorené** a **uzavreté** súčasne! Zároveň sú to jediné dve množiny, ktoré sú súčasne otvorené aj uzavreté.

Úloha 26. Overte tvrdenie príkladu 28.

Definícia 30. Prienik všetkých uzavretých množín obsahujúcich množinu A sa nazýva **uzáver** množiny A a označuje sa \overline{A} .

Poznámka 4.9. Na základe vyššie uvedenej vety je uzáver množiny *A* uzavretá množina.

Definícia 31. Zjednotenie všetkých otvorených podmnožín množiny A sa nazýva **vnútro** množiny A a označuje sa A° alebo In A.

Poznámka 4.10. Vnútro množiny *A* je otvorená množina.

Definícia 32. Budeme hovoriť, že množina *B* **je hustá v množine** *A* práve vtedy, ak $B \subseteq A \subseteq \overline{B}$.

Príklad 29. Množina racionálnych čísel \mathbb{Q} je hustá v množine reálnych čísel \mathbb{R} .

Definícia 33. Hranica množiny A sa označuje ∂A a definuje sa nasledujúcim spôsobom:

 $\partial A = \bar{A} \backslash A^{\circ}.$

Definícia 34. Množina $A \subseteq X$ sa nazýva **kompaktná**, ak sa z každej postupnosti prvkov A dá vybrať podpostupnosť, konvergujúca ku prvku A.

Veta (o kompaktných množinách \mathbb{R}^n **).** Množina $A \subset \mathbb{R}^n$ je *kompaktná* práve vtedy, ak je *ohraničená* a *uzavretá*.

Definícia 35. Bod *x* množiny *A* sa nazýva **izolovaný bod** práve vtedy, ak existuje jeho prstencové okolie, neobsahujúce body množiny *A*.

Definícia 36. Množina sa nazýva **dokonalá** práve vtedy, ak je uzavretá a neobsahuje izolované body.

Poznámka 4.11. *Dokonalá* množina je napríklad uzavretý interval $\langle 0, 1 \rangle$. S ďalšími dokonalými množinami (napr. s Cantorovou množinou) sa stretneme neskôr.

Domovská stránka
Titulná strana
Obsah
•• >>
< >
Strana 106 z 348
Späť
Celá strana
Zatvoriť
Koniec

Definícia 37. Množina *A* sa nazýva súvislá práve vtedy, ak sa nedá zapísať v tvare zjednotenia dvoch neprázdnych množín *B* a *C*, takých, že $B \cap \overline{C} = \emptyset$ a $C \cap \overline{B} = \emptyset$. **Komponenta súvislosti** množiny *A* je taká súvislá podmnožina množiny *A*, ktorá nie je (vlastnou) podmnožinou žiadnej inej súvislej podmnožiny *A*.

Definícia 38. Budeme hovoriť, že množina *A* je **úplne nesúvislá** práve vtedy, ak sú jej komponenty súvislosti **jednobodové množiny**.

Poznámka 4.12. Trochu predbehnime výklad a uveďme, že Cantorova množina sa dá charakterizovať tromi vlastnosťami: je *kompaktná, dokonalá* a *úplne nesúvislá*.

4.1.1. Hausdorfova metrika a úplnosť priestoru kompaktných množín

Nedajte sa odradiť od ďalšieho čítania prívalom definícií predchádzajúcej časti.

Kompaktné množiny zohrajú v našej knižke ešte významnú úlohu pri definovaní pojmu konvergencie množín. Preto sa v tejto časti zoznámime so špeciálnym metrickým priestorom, v ktorom ako prvky (body) budú uvažované kompaktné podmnožiny \mathbb{R}^n , a v ktorom "panuje" špeciálna — **Hausdorfova** — metrika.

Pristúpime k vybudovaniu tohoto pojmu.

Budeme uvažovať priestor $X = \mathcal{K} = \{množina všetkých kompaktných množín <math>\mathbb{R}^n\}$.

Definícia 39. Dilatáciou množiny $E \subset \mathbb{R}^n$ s polomerom r sa nazýva vektorový súčet množiny E a uzavretej gule $\overline{G}_r(\mathbf{0})$, čo budeme zapisovať:

 $E+r=\bigcup\{\bar{G}_r(\boldsymbol{x}):\,\boldsymbol{x}\in E\}.$

Definícia 40. Nech *E* a *F* sú neprázdne kompaktné podmožiny \mathbb{R}^n . **Hausdorfova vzdialenosť** H(E, F) kompaktov *E* a *F* je

$$H(E,F) = \min\{\varepsilon > 0 : E \subseteq F + \varepsilon \text{ a } F \subseteq E + \varepsilon\}.$$
(46)

Poznámka 4.13. Ako vidíme z definície, ku Hausdorfovej vzdialenosti dvoch množín *E* a *F* sa dopracujeme tak, že zvolíme nejaký polomer ε a obídeme kruhom s týmto polomerom množinu *E* a množinu *F* (v praxi vačšinou ich hranice). Ak pri obchádzaní *E* pokryjeme celú množinu *F* a naopak, potom môžeme ε zmenšiť, ak nepokryjeme jednu z množín, potom musíme ε zväčšiť. Hľadáme také ε , pri ktorom "práve" pokryjeme obidve množiny.

Ku **Hausdorfovej metrike** (46) sa môžeme dopracovať aj nasledujúcim spôsobom: ak označíme $p(x, F) = \min\{d(x, y) : y \in F\}$ *"vzdialenosť" bodu x od množiny F* potom $D(E, F) = \max\{p(x, F) : x \in E\}$ bude odchýlka množiny *E* od množiny *F*. $D(E, F) \neq$ D(F, E) o čom sa môžete presvedčiť, ak si napríklad vedľa seba nakreslíte dva podobné ale nerovnako veľké objekty *E* a *F*. Potom bude platiť:

 $H(E,F) = \max\{D(E,F), D(F,E)\}.$

Veta (o Hausdorfovej metrike). Vzdialenosť dvoch kompaktov *E* a *F* definovaná vzťahom (46) spĺňa axiomy metriky na množine \mathcal{K} .

Dôkaz. Je uvedený v prílohe knižky (CROWNOVER, 1995).

Keďže (\mathcal{K} , H) je metrický priestor, môžeme v ňom uvažovať konvergenciu postupností. Teda postupnosť *kompaktných množín* E_n nazveme konvergentnou, ak existuje taká kompaktná množina E, že platí:

$$\lim_{n\to\infty}H(E_n,E)=0$$

Veta . Nech E_n , n = 1, 2, 3, ... sú neprázdne kompaktné množiny, pričom platí

$$E_1 \supseteq E_2 \supseteq E_3 \supseteq \cdots$$

Nech

 $E=\bigcap_{n=1}^{\infty}E_n.$

Potom E je neprázdna a kompaktná množina a platí

$$\lim_{n\to\infty}E_n=E$$

v Hausdorfovej metrike.

Veta (o úplnosti priestoru kompaktných množín v Hausdorfovej met**rike).** Nech \mathcal{K} je množina všetkých kompaktných podmnožín \mathbb{R}^n a Hje Hausdorfova metrika. Potom je metrický priestor (\mathcal{K} , H) **úplný**.

Dôkaz. Dôkaz je zaujímavý a dá sa nájsť v knihe (CROWNOVER, 1995). Je založený na tom, že pre fundamentálnu postupnosť kompaktných množín A_n sa definuje nová postupnosť kompaktných množín

$$E_n = \overline{(A_n \cup A_{n+1} \cup A_{n+2} \cup \cdots)}.$$

Tieto sú do seba vložené a preto existuje ich limita $E = \bigcap_{n=1}^{\infty} E_n$. Na záver sa

n=1

dokáže, že $E = \bigcap_{n=1}^{\infty} A_n$.

Poznámka 4.14. Veta o úplnosti priestoru kompaktov sa využíva pri dôkaze existencie fraktálov, ktoré sa definujú pomocou postupností takzvaných predfraktálnych množín, ktoré sú kompaktné.

4.2. Zobrazenia

V tejto časti sa budeme venovať zobrazeniam množiny X do množiny (alebo na množinu) X, teda zobrazeniam $f: X \rightarrow X$. Takéto zobrazenia sa tiež zvyknú nazývať **operátory** v X. Každému *vzoru* $x \in X$ zobrazenie fpriradí práve jeden *obraz* $y \in X$, čo zapíšeme ako y = f(x). Medzi bodmi priestoru X z hľadiska zobrazenia f zohrávajú významnú úlohu pevné body zobrazenia.

Definícia 41. Bod *x* sa nazýva **pevným (fixným) bodom** zobrazenia *f* práve vtedy, ak platí

$$f(x) = x$$

Pevné body zobrazení hrajú dôležitú úlohu v numerickej matematike, teórii operátorov a ako sa neskôr presvedčíme aj pri zdôvodnení existencie takých matematických objektov, akými sú fraktály.

Keďže obrazy operátora f sú znova prvkami množiny X, môžeme ku nim znovu použiť tento operátor. Takže spolu s operátorom f sú na Xdefinované aj operátory $f^{[2]}$, $f^{[3]}$, ..., ktoré budeme nazývať **iterované zobrazenia**, prípadne **iterované operátory**, a ktoré sú definované nasledujúcim spôsobom

$$f^{[n]}(\mathbf{x}) = \underbrace{f(f(\dots(f_{n-krat}(\mathbf{x}))\dots))}_{n-krat}$$
, pre každé $\mathbf{x} \in X$.

S iterovanými zobrazeniami sa ešte stretneme neskôr.

4.2.1. Kontraktívne zobrazenia. Banachova veta o pevnom bode

Definícia 42. Nech (X, d) je metrický priestor. Zobrazenie $f : X \to X$ sa nazýva **kontraktívne** práve vtedy, ak existuje také číslo $q, 0 \le q < 1$, nazývané **koeficient kontrakcie**, že platí

$$d[f(x), f(y)] \leq q \, d[x, y] \qquad \text{pre každé } x, y \in X. \tag{47}$$

Poznámka 4.15. Ak je daná uzavretá podmnožina $A \subset X$ (v tom prípade bude aj (A, d) definovať metrický priestor) taká, že $f : A \to A$, môžeme definovať kontraktívnosť na množine A.

Veta (Banachova o pevnom bode). Nech (X, d) je úplný metrický priestor. Nech $f : X \to X$ je kontraktívne zobrazenie s koeficientom kontraktívnosti q. Potom platí:

- 1. Existuje práve jeden pevný bod $x^* \in X$ zobrazenia f.
- 2. Pre každé $x_0 \in X$ konverguje postupnosť $\{x_n\}_{n=1}^{\infty}$ definovaná iteračným vzťahom

$$x_n = f(x_{n-1}), \quad n = 1, 2, \dots,$$

ku pevnému bodu zobrazenia, teda

$$\lim_{n\to\infty} \boldsymbol{x}_n = \boldsymbol{x}^*$$

3. Platí odhad nepresnosti

$$d(\mathbf{x}_n, \mathbf{x}^*) \leq \frac{q^n}{1-q} d(\mathbf{x}_1, \mathbf{x}_0) \text{ alebo } d(\mathbf{x}_n, \mathbf{x}^*) \leq \frac{q}{1-q} d(\mathbf{x}_n, \mathbf{x}_{n-1}).$$

Dôkaz. Vzhľadom na dôležitosť dôkaz uvedieme, môže tiež zaujať tých, ktorí sa neuspokoja len súhrnom poučiek a chcú vedieť ako "veci fungujú". Najprv dokážeme, že postupnosť je fundamentálna. Spolu s úplnosť ou priestoru X to bude znamenať existenciu

limity x*. Na základe trojuholníkovej nerovnosti platí

$$d[\mathbf{x}_2, \mathbf{x}_1] = d[f(\mathbf{x}_1), f(\mathbf{x}_0)] \le q \, d[\mathbf{x}_1, \mathbf{x}_0],$$

$$d[\mathbf{x}_3, \mathbf{x}_2] = d[f(\mathbf{x}_2), f(\mathbf{x}_1)] \le q \, d[\mathbf{x}_2, \mathbf{x}_1] \le q^2 \, d[\mathbf{x}_1, \mathbf{x}_0], \quad \dots,$$

a teda aj

a

 $d[\mathbf{x}_{n+1},\mathbf{x}_n] \leq q^n d[\mathbf{x}_1,\mathbf{x}_0].$

Ďalej platí

$$d[\mathbf{x}_{n+p}, \mathbf{x}_n] \leq d[\mathbf{x}_{n+p}, \mathbf{x}_{n+p-1}] + d[\mathbf{x}_{n+p-1}, \mathbf{x}_n] \leq \cdots \leq \\ \leq d[\mathbf{x}_{n+p}, \mathbf{x}_{n+p-1}] + d[\mathbf{x}_{n+p-1}, \mathbf{x}_{n+p-2}] + \cdots + d[\mathbf{x}_{n+2}, \mathbf{x}_{n+1}] + d[\mathbf{x}_{n+1}, \mathbf{x}_n] \leq \\ \leq \left[q^{n+p-1} + \cdots + q^{n+1} + q^n\right] d[\mathbf{x}_1, \mathbf{x}_0] \leq \left[\cdots + q^2 + q + 1\right] q^n d[\mathbf{x}_1, \mathbf{x}_0] = \frac{q^n}{1-q} d[\mathbf{x}_1, \mathbf{x}_0].$$

Keďže q < 1, pre ľubovoľné $\varepsilon > 0$ bude pre dostatočne veľké n a ľubovoľné $p \in \mathbb{N}$ platiť $d[\mathbf{x}_{n+p}, \mathbf{x}_n] < \varepsilon$, čo dokazuje fundamentálnosť postupnosti $\{\mathbf{x}_n\}_{n=1}^{\infty}$ a existenciu limity $\lim_{n \to \infty} \mathbf{x}_n = \mathbf{x}^*$.

Ďalej ukážeme, že limita x^* postupnosti je pevný bod.

$$0 \leq d[x^*, f(x^*)] \leq d[x^*, x_n] + d[x_n, f(x_n)] + d[f(x_n), f(x^*)] \leq \\ \leq (1+q) d[x^*, x_n] + d[x_n, x_{n+1}] \leq (1+q) d[x^*, x_n] + q^n d[x_1, x_0].$$

Ak na pravej strane predchádzajúcej nerovnosti urobíme limitný prechod $n \to \infty$ a využijeme fakt, že $\lim_{n\to\infty} d[\mathbf{x}^*, \mathbf{x}_n] = 0$ (prečo?), dostaneme

 $0 \leq d[\mathbf{x}^*, \mathbf{f}(\mathbf{x}^*)] \leq 0 \qquad \Leftrightarrow \qquad \mathbf{x}^* = \mathbf{f}(\mathbf{x}^*).$

Ukážeme, že nemôžu existovať dva rôzne pevné body. Nech x_1^* a x_2^* sú pevné body. Potom:

$$0 \leq d[\mathbf{x}_1^*, \mathbf{x}_2^*] \leq q \, d[\mathbf{x}_1^*, \mathbf{x}_2^*]$$

Domovská stránka
Titulná strana
Obsah
•• ••
Strana 113 z 348
Späť
Celá strana
Zatvoriť

a teda

$$(q-1)\,d[\boldsymbol{x}_1^*,\boldsymbol{x}_2^*]\geqq 0.$$

Keďže q < 1, musí byť $d[x_1^*, x_2^*] \leq 0$ a teda $d[x_1^*, x_2^*] = 0$. Teda $x_1^* = x_2^*$. Na záver dokážeme odhady uvedené v bode 3.

$$d[\mathbf{x}^*, \mathbf{x}_n] \leq d[\mathbf{x}^*, \mathbf{x}_{n+1}] + d[\mathbf{x}_{n+1}, \mathbf{x}_n] \leq q \, d[\mathbf{x}^*, \mathbf{x}_n] + q \, d[\mathbf{x}_n, \mathbf{x}_{n-1}],$$

a teda

$$(1-q) d[\mathbf{x}^*, \mathbf{x}_n] \leq q d[\mathbf{x}_n, \mathbf{x}_{n-1}]$$

Odtiaľ

$$d[\mathbf{x}^*, \mathbf{x}_n] \leq \frac{q}{1-q} d[\mathbf{x}_n, \mathbf{x}_{n-1}] \leq \frac{q^n}{1-q} d[\mathbf{x}_1, \mathbf{x}_0]$$

Príklad 30. Ukážeme, ako sa dá Banachova veta o pevnom bode využiť pri riešení nelineárnej rovnice g(x) = 0. Rovnicu upravíme na tvar x = f(x), napríklad $x = \lambda g(x) + x$, $\lambda \neq 0$. Pevný bod zobrazenia f je zrejme riešením rovnice g(x) = 0. Ak je funkcia f(x) diferencovateľná, potom na základe Lagrangeovej vety môžeme písať

$$|f(x) - f(y)| = |f'(\xi)| \cdot |x - y|, \quad \xi = x + \theta(y - x), \quad \theta \in (0, 1).$$

Ak bude |f'(x)| < 1 na nejakom intervale obsahujúcom pevný bod a interval sa bude zobrazovať do seba, bude zobrazenie f na tomto intervale kontraktívne. Preto hľadané riešenie — pevný bod f — získame ako limitu iteračnej postupnosti $x_n = f(x_{n-1})$.

Domovská stránka
Titulná strana
Obsah
•• >>
Strana 114 z 348
Späť
Celá strana
Zatvoriť
Koniec

Poznámka 4.16. O využití Banachovej vety o pevnom bode pri riešení nelineárnych rovníc a sústav rovníc sa dočítate viac v skriptách (PIRČ a BUŠA, 2002).

4.2.2. Afinné zobrazenia

Medzi lineárne zobrazenia v \mathbb{R}^n , reprezentované maticou zobrazenia A, môžeme zaradiť také zobrazenia ako *rotácia*, rôzne druhy *škálovania* (*zmenšovania* alebo *zväčšovania* jednotiek), *symetrické zobrazenie voči priamke*, prechádzajúcej začiatkom súradnicového systému alebo premietanie na priamku, prechádzajúcu začiatkom súradnicového systému. Už také jednoduché zobrazenie, akým je *posun*, nepatrí medzi lineárne. Vzhľadom na dôležitosť týchto zobrazení bol zavedený pojem *afinného* zobrazenia.

Definícia 43. Zobrazenie v \mathbb{R}^n , ktoré pozostáva z **lineárneho** zobrazenia a následného **posunu** nazývame **afinné** zobrazenie.

Každé *afinné* zobrazenie **T** v \mathbb{R}^n je teda reprezentované maticou lineárneho zobrazenia **A** a vektorom posunutia $p \in \mathbb{R}^n$:

$$T(x) = A x + p, \qquad x \in \mathbb{R}^n.$$
(48)

Príklad 31. Určme zobrazenie v \mathbb{R}^2 tak, aby sa jednotkový štvorec 1. kvadrantu (\Box_{ABCD} , kde body $A = (0,0)^T$, $B = (1,0)^T$, $C = (1,1)^T$, $D = (0,1)^T$) zobrazil na jednotkový štvorec 3. kvadrantu.

Riešenie. Riešenie úlohy je nejednoznačné. Jedným z riešení je zobrazenie — obyčajný posun — reprezentované nasledujúcim zápisom

$$\mathbf{T}(\mathbf{x}) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} -1 \\ -1 \end{bmatrix}$$

Overte správnosť riešenia.

Úloha 27. Určte ďalšie afinné zobrazenia, ktoré sú riešením príkladu 31.

Poznámka 4.17. Hoci existuje viac zobrazení, ktoré jeden štvorec transformujú na iný, tieto zobrazenia budú rôzne. Prejaví sa to v tom, že iné objekty budú transformovať rôznym spôsobom.

Ako sme už spomenuli, *afinné zobrazenie nie je lineárne*. Ovšem ak priestor \mathbb{R}^n *vnoríme* do priestoru \mathbb{R}^{n+1} a to tak, že ku zložkám vektoru $\mathbf{x} = (x_1, \ldots, x_n)^T$ pridáme zložku $x_{n+1} = 1$, môžeme sa presvedčiť, že existuje lineárne zobrazenie v \mathbb{R}^{n+1} , ktoré sa vo vnorenom \mathbb{R}^n prejavuje ako afinné. Uvažujme nasledujúce zobrazenie \mathbb{R}^{n+1} , reprezentované štvorcovou maticou

$$\bar{A} = \begin{bmatrix} A & p \\ \mathbf{0}^T & 1 \end{bmatrix}$$

rozmeru n + 1. Dostávame

$$\bar{A} \begin{bmatrix} x \\ 1 \end{bmatrix} = \begin{bmatrix} A & p \\ 0^T & 1 \end{bmatrix} \begin{bmatrix} x \\ 1 \end{bmatrix} = \begin{bmatrix} Ax+p \\ 1 \end{bmatrix}.$$

Príklad 32. Zaujímavé sú zobrazenia, ktoré majú spoločný názov **izometrie**. Sú to zobrazenia, pri ktorých sa vzdialenosť dvoch vzorov rovná vzdialenosti ich obrazov. Patrí medzi ne napríklad afinné zobrazenie, pozostávajúce z rotácie (reprezentovanej tzv. ortogonálnou maticou) a následného posunu — to je typická operácia, ktorú môže vykonávať rameno manipulátora. Preto bývajú jednotlivé úkony manipulátora v trojrozmernom priestore reprezentované maticou rádu 4, kde v ľavom hornom rohu je umiestnená matica rotácií, v prvých troch riadkoch 4. stĺpca je vektor posunutia a v pravom dolnom rohu je umiestnená jednotka.

Príklad 33. To isté zobrazenie súčasne môže byť aj nebyť izometriou, pretože táto vlastnosť súvisí s metrikou. Napríklad rotácia, spomínaná vyššie, bude izometriou pri použití euklidovskej metriky, ale nebude izometriou pri použití manhattanskej alebo maximum metriky.

Úloha 28. Ukážte, že rotácia v priestore \mathbb{R}^2 nie je izometria pri použití manhattanskej ani maximum metriky.

Vzhľadom na to, že naša predstava o podobnosti objektov je taká, že rotácia ani posunutie podobnosť neovplyvňujú, nasledujúca definícia používa euklidovskú metriku.

Definícia 44. Uvažujme metrický priestor (\mathbb{R}^n , d_2), kde d_2 je euklidovská metrika. Zobrazenie $S : \mathbb{R}^n \to \mathbb{R}^n$ sa nazýva **zobrazenie podobnosti s koeficientom podobnosti** r (r > 0) práve vtedy, ak platí:

 $d_2[S(x), S(y)] = r d_2[x, y]$ pre všetky $x, y \in \mathbb{R}^n$.

Veta (o podobnosti). Zobrazenie podobnosti $S : \mathbb{R}^n \to \mathbb{R}^n$ s koeficientom podobnosti r > 0 je afinné zobrazenie tvaru

$$\mathbf{S}(\mathbf{x}) = r \, \mathbf{Q} \, \mathbf{x} + \mathbf{b},\tag{49}$$

kde **Q** je ortogonálna matica a $\boldsymbol{b} \in \mathbb{R}^n$ je stĺpcový vektor.

Dôkaz. Nájdete ho v knihe (CROWNOVER, 1995) spoločne s definíciou ortogonálnej matice.

Veta (o kontraktívnosti zobrazenia podobnosti). Zobrazenie podobnosti $S : \mathbb{R}^n \to \mathbb{R}^n$ s koeficientom podobnosti r > 0 je kontraktívne práve vtedy, ak je r < 1.

Dôkaz. Využijeme fakt, že

$$d_2^2(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|_2^2 = \sqrt{\sum_{k=1}^n |x_k - y_k|^2},$$

pričom pre ortogonálnu maticu Q platí $||Q \cdot x||_2 = ||x||_2$. Potom na základe

predchádzajúcej vety platí

$$d_2[S(x), S(y)] = ||S(x) - S(y)||_2 = ||rQ(x - y)||_2 =$$
$$= r ||x - y||_2 = r d_2[x, y].$$

Poznámka 4.18. Afinné zobrazenia hrajú dôležitú úlohu aj v oblasti počítačovej grafiky, kde sa často zväčšujú alebo zmenšujú rôzne "okná", prípadne sa navyše posúvajú a otáčajú.

4.2.3. Systémy iterovaných funkcií

Systémy iterovaných funkcií (SIF) patria medzi najzaujímavejšie a najhlbšie úspechy pri konštruovaní fraktálov. Ako sa uvádza v knihe (CROWN-OVER, 1995), matematické aspekty SIF rozpracoval J. HUTCHINSON (1981) a M. BARNSLEY (1988) má rozhodujúci podiel na tom, že sa samotná metóda stala známou.

Uvažujme teraz množinu kontraktívnych zobrazení $\mathbb{R}^n \to \mathbb{R}^n$:

 T_1 s koeficientom kontraktívnosti $r_1 < 1$,

 T_2 s koeficientom kontraktívnosti $r_2 < 1$,

 T_m s koeficientom kontraktívnosti $r_m < 1$.

Nech (\mathcal{K}, H) je priestor všetkých neprázdnych kompaktov \mathbb{R}^n s Hausdorfovou metrikou H.

Definícia 45. Zobrazením Hutchinsona $T : \mathcal{K} \to \mathcal{K}$ budeme nazývať zobrazenie, definované nasledujúcim spôsobom:

$$T(E) = T_1(E) \cup T_2(E) \cup \cdots \cup T_m(E), \quad E \in \mathcal{K}.$$
 (50)

Definícia 46. Systémom iterovaných funkcií sa nazýva množina vyššie uvedených zobrazení spolu s iteračným procesom

$$E_0 = \text{kompaktná množina (ľubovoľná)}$$

$$E_1 = T(E_0),$$

$$E_2 = T(E_1),$$

$$\vdots$$

$$E_n = T(E_{n-1}),$$

$$\vdots$$

Základnou úlohou teórie SIF je skúmať, za akých okolností SIF určuje limitnú množinu *E*:

$$E=\lim_{n\to\infty}E_n,$$

v zmysle konvergencie v Hausdorfovej metrike.

Veta (o kontraktívnosti zobrazenia Hutchinsona). Zobrazenie *T*, definované na základe (50) je kontraktívne zobrazenie na \mathcal{K} s Hausdorfovou metrikou. Jeho koeficient kontraktívnosti sa rovná

 $r=\max\{r_1,r_2,\ldots,r_m\}.$

Dôkaz. Je uvedený v knihe (CROWNOVER, 1995).

Na základe Banachovej vety o pevnom bode platí nasledujúca veta, týkajúca sa SIF.

Veta (o konvergencii postupností SIF). Nech $T_1, T_2, ..., T_m$ je postupnosť kontraktívnych zobrazení v \mathbb{R}^n . Pre ľubovoľnú začiatočnú množinu $E_0 \in \mathcal{K}$, systém iterovaných funkcií

$$E_n = T(E_{n-1}), \quad n = 1, 2, \ldots,$$

kde *T* je zobrazenie Hutchinsona (50), konverguje v Hausdorfovej metrike k jedinej množine $E \in \mathcal{K}$. Množina *E* sa nazýva **atraktorom** SIF a môžeme zapísať

$$E = \lim_{n \to \infty} \boldsymbol{T}^{[n]}(E_0)$$

Poznámka 4.19. Ostaneme pri tomto zaužívanom názve, hoci by sa možno hodilo hovoriť o iterovaných množinách.

Dôkaz. Dôkaz vyplýva z predchádzajúcej vety o kontraktívnosti zobrazenia Hutchinsona. Banachova veta už dokazuje existenciu aj jednoznačnosť

limity postupnosti — pevného bodu E zobrazenia T.

Poznámka 4.20. Keďže v prípade $E_0 = x_0 \in \mathbb{R}^n$ sú splnené podmienky vety o konvergencii, pretože jediný bod je kompaktná množina, môže sa iteračný proces SIF odštartovať z ľubovoľného bodu $x_0 \in \mathbb{R}^n$.

Uvedený iteračný proces SIF je tzv. **deterministický**, náhodný je len spôsob výberu E_0 , čo nijako neovplyvní výsledok. V knihe (CROWNOVER, 1995) je popísaný spôsob použitia SIF na vytváranie zobrazení fraktálov pomocou počítača.

Na zobrazenie fraktálov sa používa aj tzv. **náhodný** (randomizovaný) algoritmus, jednoduchšie realizovateľný na počítači, nazývaný tiež **hra "Chaos"**. Namiesto toho, aby sa na každom kroku použili všetky zobrazenia T_1, T_2, \ldots, T_m , použije sa na každom kroku len jedno náhodne vybrané. Ak začneme iterovať z jedného bodu x_0 , na každom kroku dostávame jeden bod x_n . V knižke (CROWNOVER, 1995) sa uvádza, že po niekoľkých iteráciách začínajú body x_n zapĺňať atraktor *E*. Program náhodného algoritmu je uvedený v prílohe.

Pravdepodobne by pre nás všetkých bolo oveľa lepšie, keby nielen pri výučbe alebo vo vedeckej práci, ale aj v každodennom politickom a ekonomickom živote čo najviac ľudí pochopilo, že jednoduché dynamické systémy nemusia viesť ku jednoduchému správaniu.

May, 1976 (MAY, 1976).

5. Jednorozmerné diskrétne dynamické systémy

Prvý krok na ceste pochopenia chaotickej dynamiky predstavujú jednorozmerné diskrétne dynamické sústavy. Na prípade jednoduchých zobrazení je možné skúmať zrod chaotického správania a získať základné kamienky na vybudovanie "chaotickej intuície", či "intuície chaosu" (GA-VALCOVÁ, 1999). Jednorozmerné zobrazenia Poincaré pomáhajú vyšetrovať aj dynamiku viacrozmerných sústav.

V tejto kapitole budeme skúmať vlastnosti iteračných postupností definovaných vzťahom

$$x_{n+1} = f(x_n), \qquad n = 0, 1, 2, \dots,$$
 (51)

kde funkcia f(x) je reálna funkcia jednej reálnej premennej. Väčšinou ju budeme uvažovať ako zobrazenie $f : \langle 0, 1 \rangle \rightarrow \langle 0, 1 \rangle$. Násobné použitie

zobrazenia budeme označovať $f^{[n]}$, teda

$$f^{[n]}(x) = \underbrace{f(f(\cdots f(x) \cdots))}_{n-\mathrm{krát}}(x) \cdots).$$

Pevný bod $x^* = f(x^*)$ je x-ová súradnica priesečníka grafu funkcie f(x) s osou prvého kvadrantu y = x.

Ak je funkcia f(x) diferencovateľná, potom na základe Lagrangeovej vety môžeme písať

$$|f(x) - f(y)| = |f'(\xi)| \cdot |x - y|, \quad \xi = x + \theta(y - x), \quad \theta \in (0, 1),$$

a teda ak bude |f'(x)| < 1 na nejakom intervale obsahujúcom pevný bod, bude zobrazenie f na tomto intervale kontraktívne a pevný bod bude stabilný (atraktor). Naopak, ak bude $|f'(x^*)| > 1$, bude pevný bod nestabilný (repeler).

5.1. Lineárne a po častiach lineárne zobrazenia

5.1.1. Lineárne zobrazenia

Najprv si všimnime dva príklady lineárnych zobrazení, ktoré majú na intervale (0, 1) pevný bod (pozri obrázok 13).

Na ľavom obrázku sú znázornené iterácie z bodu $x_0 = 0.01$ pre funkciu f(x) = x/2 + 0.4 a na pravom obrázku iterácie z bodu $x_0 = 0.5$ pre funkciu f(x) = -2x + 1.4. Keďže prvá funkcia má deriváciu rovnú 0.5,

Obr. 13: Iterácie lineárneho procesu

je zobrazenie (51) kontraktívne a iterácie sa približujú k pevnému bodu $x^* = 0.8$. Absolútna hodnota derivácie druhej funkcie je rovná 2, preto je pevný bod $x^* = 14/30 \doteq 0.467$ nestabilný (repeler) a iterácie, ktoré začali celkom blízko v bode $x_0 = 0.5$ sa od neho rýchlo vzďaľujú.

Ďalší výskum lineárnych iterácií nie je potrebný ani zaujímavý, pretože s výnimkou prípadov, keď je smernica priamky 1 alebo -1, je správanie iteračných procesov s lineárnymi funkciami rovnaké, ako je tomu na obrázku — iterácie sa buď približujú ku pevnému bodu z ľubovoľného bodu $x_0 \in \mathbb{R}$ alebo od neho odchádzajú. Zápornosť alebo kladnosť derivácie ovplyvňuje typ konvergencie, resp. divergencie: ak je derivácia kladná, vzďaľujeme alebo približujeme sa po "schodoch", pri zápornej derivácii po "pavučinách".

5.1.2. Bernoulliho posun

Uvažujme teraz jednorozmerné zobrazenie³ na intervale (0, 1) (pozri obrázok 14 vľavo):

$$x_{n+1} = \sigma(x_n) \equiv 2x_n \mod 1, \quad n = 0, 1, 2, \dots$$
 (52)

Začiatočný bod zapíšeme v dvojkovej sústave

$$x_0 = \sum_{k=1}^{\infty} a_k 2^{-k} \triangleq (0.a_1 a_2 a_3 \dots)_2,$$
(53)

kde cifry a_k nadobúdajú hodnoty 0 alebo 1. Ukážte, že⁴ po prvej iterácii dostaneme

$$x_1 = \sigma(x_0) = (0.a_2a_3a_4\ldots)_2.$$
 (54)

Teda zobrazenie σ pôsobí na dvojkový zápis čísla tak, že vypustí prvú cifru po desatinnej (?) bodke, pričom postupnosť zvyšných cifier sa posunie o jedno miesto vľavo. Toto sa nazýva **Bernoulliho posun**. Jediným pevným bodom je bod $x^* = 0$.

Už pri tomto "jednoduchom" zobrazení sa prejavujú prvky chaotického správania, vo forme **citlivej závislosti** na začiatočných podmienkach. Ak

³Táto časť je spracovaná najmä podľa knihy (SCHUSTER, 1984).

⁴Ak je $x_0 = 1$, môžeme ho napísať v tvare (53) so samými jednotkami za desatinnou bodkou alebo s jednotkou pred desatinnou bodkou a samými nulami za ňou.

sa totiž dva body x_0 a x'_0 odlišujú až v (n + 1)-om znaku, body $\sigma^{[n]}(x_0)$ a $\sigma^{[n]}(x'_0)$ sa už budú odlišovať v prvom znaku.

Postupnosť iterácií $\sigma^{[n]}(x_0)$ má **rovnaké štatistické vlastnosti** ako postupnosť hádzania mince. Ak totiž výsledku hodu mincou priradíme hodnotu 0 alebo 1 v závislosti na tom, či padla panna alebo orol a iterácii $\sigma^{[n]}(x_0)$ priradíme hodnotu 0 alebo 1 v závislosti na tom, či sa nachádza v ľavej alebo v pravej polovici intervalu $\langle 0, 1 \rangle$, potom každej náhodnej postupnosti hodov, zodpovedá práve jedna postupnosť iterácií $\sigma^{[n]}(x_0)$, teda práve jeden bod x_0 .

Uvažovaný dynamický systém má tiež vlastnosť **ergodickosti**⁵, keď pre ľubovoľné zvolené $\varepsilon > 0$ a ľubovoľný bod $x \in \langle 0, 1 \rangle$ sa obrazy "takmer každého" bodu x_0 nekonečne veľa ráz priblížia ku bodu x na vzdialenosť menšiu ako ε . Môžeme si všimnúť, že ak je x_0 racionálne, má buď periodický rozvoj alebo končí samými nulami.⁶ V tomto prípade buď nastáva cyklus s dĺžkou rovnou dĺžke periódy alebo iterácie skončia v pevnom bode 0. V teórii čísel sa dokazuje, že takmer všetky iracionálne čísla z intervalu $\langle 0, 1 \rangle$ (s výnimkou množiny nulovej miery) obsahujú v sebe ľubovoľnú konečnú postupnosť znakov. Preto sa obrazy týchto čísel približujú ku ľubovoľnému číslu $x \in \langle 0, 1 \rangle$.

Poznámka 5.1. (DRUTAROVSKÝ, BAČA a GALAJDA, 2004; DRUTAROVSKÝ,

⁵Pojem ergodickosti bude zavedený neskôr.

⁶V prípade samých jednotiek na konci čísla použijeme jeho ekvivalentný zápis so samými nulami na konci.

Obr. 14: Bernoulliho posun a trojuholníkové zobrazenie

GALAJDA, FISHER a BAČA, 2004) navrhli hardvérový "Generátor skutočne náhodných čísel", ktorý využíva podobný deterministický proces, ako je Bernoulliho posun.

5.1.3. Trojuholníkové zobrazenie

Ďalšie jednoduché a zaujímavé zobrazenie sa nazýva **trojuholníkové zobrazenie**.

$$x_{n+1} = \Delta(x_n) \equiv r \left[1 - |1 - 2x_n| \right], \quad n = 0, 1, 2, \dots$$
(55)

Pre hodnotu r = 1 je zobrazenie znázornené v pravej časti obrázka 14. Je zrejmé, že pre r < 1/2 má trojuholníkové zobrazenie jediný pevný bod $x^* = 0$, ktorý je atraktorom. Po prechode cez hodnotu r = 1/2 sa tento atraktor mení na repeler (nestabilný pevný bod), pričom sa objavuje ďalší pevný bod v druhej polovici intervalu. Tento pevný bod je zrejme tiež repeler, pretože absolútna hodnota derivácie $|\Delta'(x^*)| = 2$.

Na obrázku 15 sú znázornené zobrazenia $\Delta^{[1]}(x) = \Delta(x), \Delta^{[2]}(x) = \Delta(\Delta(x))$ a $\Delta^{[3]}(x) = \Delta(\Delta(\Delta(x)))$ postupne pre hodnoty parametra r = 0.7, $r = (\sqrt{5} + 1)/4, r = 0.9$ a r = 1. Zobrazenie Δ má pre r > 1/2 dva pevné body — $x_1^* = 0$ a $x_2^* = 2r/(1 + 2r)$.

Úloha 29. Overte, že $x_2^* = 2r/(1+2r)$ je pevný bod zobrazenia Δ pre r > 1/2 a že $x_2^* > 1/2$.

Zobrazenie $\Delta^{[2]}$ pripomínajúce písmeno M, má pre všetky uvedené hodnoty *r* 4 pevné body. Dva z nich sú samozrejme pevné body zobrazenia Δ , ale ďalšie dva (označme ich x_3^* a x_4^*) už pevnými bodmi Δ nie sú. Platí:

$$\Delta(\Delta(x_3^*)) = x_3^*, \quad \Delta(\Delta(x_4^*)) = x_4^*$$

Ak označíme $\Delta(x_3^*) = x^* \neq x_3^*$ dostaneme, že

$$\Delta(\Delta(x^*)) = \Delta(\Delta(\Delta(x^*_3))) = \Delta(x^*_3) = x^*.$$

Preto je x^* tiež pevný bod $\Delta^{[2]}$. Keďže to však nemôže byť ani x_1^* , x_2^* ani x_3^* , musí to byť x_4^* , teda

$$\Delta(x_3^*) = x_4^*, \qquad \Delta(x_4^*) = \Delta(\Delta(x_3^*)) = x_3^*$$

Zatvoriť

Koniec

Obr. 15: Pevné body viacnásobného trojuholníkového zobrazenia

Pevné body x_3^* a x_4^* zobrazenia $\Delta^{[2]}$ sa teda zobrazujú vzájomne na seba a vytvárajú tak cyklus s periódou 2.

Úloha 30. Dokážte, že zobrazenie $\Delta^{[2]}$ má 4 pevné body pre každé r > 1/2. Pokúste sa nájsť pevný bod z intervalu (0, 0.5).

Môžeme si všimnúť, že $\Delta^{[3]}$ má najprv len dva pevné body. Pri hodnote $r = (\sqrt{5} + 1)/4$ (pri ktorej má $\Delta^{[3]}$ 5 pevných bodov) sa situácia zmení a pre všetky väčšie hodnoty už má $\Delta^{[3]}$ 8 pevných bodov.

Úloha 31. Dokážte, že hodnota $r = (\sqrt{5} + 1)/4$ je bifurkačná hodnota zobrazenia $\Delta^{[3]}$.

Úloha 32. Určte typ stability všetkých pevných bodov zobrazení Δ , $\Delta^{[2]}$ a $\Delta^{[3]}$.

Na obrázku 16 sú znázornené iterácie v Bernoulliho zobrazení s funkciou $\sigma(x)$ (vľavo) a trojuholníkového zobrazenia s funkciou $\Delta(x)$ pre hodnotu parametra r = 0.9 (štartovacie hodnoty boli $x_0 = 0.3$, 0.301 a 0.31). Je vidieť, že po niekoľkých iteráciách sa hodnoty pre rôzne začiatočné x_0 vzďaľujú, aby sa zasa neskôr k sebe priblížili.

Keďže počet iterácií je neveľký, ešte sa neprejavujú nepresnosti spôsobené aritmetikou. Keby sme však pri Bernoulliho posune (pri počítaní v MATLABe⁷) zmenili počet iterácií z 30 na 60, čakalo by nás prekvapenie.

⁷Pri počítaní v programe MAPLE sa nepresnosť aritmetiky v tomto prípade neprejavuje (asi nepočíta v dvojkovej sústave).

Obr. 16: Iterácie Bernoulliho a trojuholníkového zobrazenia — $x_0 = 0.3$, 0.301 a 0.31

Všetky tri procesy by skončili na hodnote 0. Dá sa to zrejme vysvetliť tak, že pri každej iterácii sa v zápise x_n pridá jedna nula zprava (vzľadom na konečnú aritmetiku). Preto všetky procesy dôjdu do bodu $x^* = 0.10000_2$ = 0.5 pre ktorý platí $\sigma(0.5) = 0$ a iteračný proces sa dostáva do pevného bodu 0. Najprekvapujúcejšie to pôsobí pri začiatočnej hodnote 0.3, pretože máme $\sigma(0.3) = 0.6$, $\sigma(0.6) = 0.2$, $\sigma(0.2) = 0.4$, $\sigma(0.4) = 0.8$ a $\sigma(0.8) = 0.6$ — teda začiatočný bod nás veľmi rýchlo vyvedie na cyklus s periódou 4 (obrázok 17 vľavo — $x_0 = 0.3$ resp. 0.92357).

Ak zmeníme funkciu $\sigma(x)$ na $\hat{\sigma}(x) = 3x \mod 1$, nestretneme sa s efektom nulovania (MATLAB) ale cyklus 0.3–0.9–0.7–0.1–0.3 sa asi po 30 iteráciách "rozpadne" a systém prechádza na chaotické správanie, čo vlastne potvrdzuje nestabilitu pevných bodov (obrázok 17 vpravo). Uvedené problémy sa pri použití programu MAPLE neprejavujú, teda sú závislé od imlementovanej aritmetiky.

5.2. Verhulstov logistický dynamický systém

V tejto časti sa budeme zaoberať logistickým zobrazením

$$x_{n+1} = f_r(x_n) = rx_n(1-x_n), \qquad n = 0, 1, 2, \dots$$
 (56)

Ako mnohé iné zobrazenia, aj toto zobrazenie popisuje dynamiku viacerých odlišných systémov. Ako prvý ho v roku 1845 použil P. V. Verhulst na popis dynamiky populácie v uzavretom prostredí (SCHUSTER, 1984), avšak pre spojitý systém. Predstavme si, že z_n je počet jedincov v danom prostredí

v roku *n* a z_{max} je maximálny počet. Ak budeme predpokladať, že prírastok populácie $z_{n+1} - z_n$ bude ovplyvnený jednak počtom z_n (čím, viac jedincov populácia má, tým väčší bude jej rast) a tiež "životným priestorom" $z_{max} - z_n$, potom môžeme zapísať

$$z_{n+1} = z_n + k z_n (z_{\max} - z_n)$$

Po vydelení hodnotou zmax dostaneme

$$\frac{z_{n+1}}{z_{\max}} = \frac{z_n}{z_{\max}} \left[1 + k \cdot z_{\max} \cdot \left(1 - \frac{z_n}{z_{\max}} \right) \right].$$

Po substitúcii $y_n = \frac{z_n}{z_{\text{max}}}$ a $q = kz_{\text{max}}$ a d'alej $x_n = \frac{q}{q+1}y_n$ a r = q+1 dostávame vzťah (56).

PEITGEN a RICHTER (1986) uvažovali nasledujúci model bankových úspor: Predpokladajme, že percento ročného prírastku bude klesať pri rastúcich vkladoch podľa pravidla $\varepsilon = \varepsilon_0(1 - z_n/z_{max})$, kde z_n predstavuje vklad v roku *n*. Teda výška vkladu sa bude vyvíjať podľa nasledujúceho pravidla:

$$z_{n+1} = \left[1 + \varepsilon_0 (1 - z_n / z_{\max})\right] z_n.$$

Po substitúcii $x_n = \frac{\varepsilon_0}{(1 + \varepsilon_0)z_{\max}} z_n$, resp. $z_n = \frac{(1 + \varepsilon_0)z_{\max}}{\varepsilon_0} x_n$ dostávame

$$x_{n+1} = (1 + \varepsilon_0) x_n (1 - x_n)$$

čo je predpis (56).

Venujme sa chvíľu funkcii $f_r(x) = rx(1 - x)$ (index *r* budeme väčšinou vynechávať). Táto funkcia je kvadratická funkcia premennej *x*, má dva nulové body $x_1 = 0$ a $x_2 = 1$. Jej grafom (pri r > 0) je parabola otočená vrcholom nahor. $f'_r(x) = r(1 - 2x)$, a preto $f'_r(1/2) = 0$ pre každé *r*. Pre každé r > 0 má funkcia *f* maximum v bode $x_s = 1/2$, pričom platí $f_{max} = r/4$. Funkcia bude zobrazovať interval $\langle 0, 1 \rangle$ do seba pre $r \in \langle 0, 4 \rangle$. Ďalej budeme uvažovať len tieto hodnoty parametra *r*. Všimnime si ešte hodnotu $f'_r(0) = r$.

Bude nás zaujímať, aká bude **dynamika systému** (56) v závislosti od hodnoty parametra r.⁸

V prípade $r \in \langle 0, 1 \rangle$ sa bude graf funkcie nachádzať pod osou y = x, pričom sa s ňou bude pretínať len v bode x = 0 (na intervale $\langle 0, 1 \rangle$). Je teda zrejmé, že 0 je jediný pevný bod zobrazenia. Vzhľadom na to, že pre $0 \leq r < 1$ je $|f'_r(0)| < 1$, je pre tieto hodnoty 0 priťahujúcim pevným bodom (atraktorom). Je tomu tak aj pri hodnote r = 1, pretože derivácia v bodoch blízkych k nule je v absolútnej hodnote menšia ako 1.

Pre r > 1 (čiže pri prechode hodnoty parametra r cez jednotku) sa obrázok kvalitatívne mení. Preto hovoríme, že hodnota r = 1 je bifurkačná hodnota logistického zobrazenia. Keďže derivácia funkcie f v bode 0 je r > 1, a f(0) = 0, bude jej graf pre x > 0 začínať nad osou y = x. V bode x = 1 je f(1) = 0 a graf sa nachádza pod osou 1. kvadrantu. Z uvedeného

⁸Skúste samostatne načrtnúť funkciu $f_r(x)$ pre rôzne hodnoty r, napríklad pre 0.5, 1, 2, 3 a 4.

vyplýva, že na intervale (0,1) existuje ďalší pevný bod. Vypočítame ho z rovnice $x^* = f_r(x^*)$.

$$x^* = rx^*(1-x^*) \quad \Rightarrow \quad \frac{1}{r} = 1-x^* \quad \Leftrightarrow \quad x^* = 1-\frac{1}{r}.$$

Na vyšetrenie charakteru pevného bodu určíme deriváciu funkcie f_r v tomto bode:

$$f'_r(1-1/r) = r\left[1-2\left(1-\frac{1}{r}\right)\right] = 2-r.$$
(57)

Absolútna hodnota derivácie v pevnom bode bude menšia ako jedna práve vtedy, ak

$$1 < r < 3$$
,

čo je podmienka stability druhého pevného bodu. Ak zhrnieme doterajšie poznatky, vidíme, že pri zväčšovaní parametra r od 0 po 1 bol jediný pevný bod $x^* = 0$ stabilným atraktorom. Pri prechode cez hodnotu r = 1 stratil tento bod stabilitu, pričom sa zároveň objavil, další pevný bod $x^* = 1 - 1/r$, ktorý sa stal atraktorom pre hodnoty r od 1 po 3. Čo sa udeje po prechode tejto druhej bifurkačnej hodnoty? Pozrieme sa najprv na priebeh iterácií pri hodnotách blízkych r = 3.

Na obrázku 18 vľavo je priebeh iterácií podľa predpisu (56) pri hodnote parametra r = 2.8. Vpravo pri hodnote r = 3.2. V obidvoch prípadoch bola začiatočná hodnota volená $x_0 = 0.1$. Vidíme, že hoci prvé iterácie sa správajú podobne a hodnota x_n sa približuje k pevnému bodu x^* , v prípade r = 2.8 je tento bod atraktorom a každá ďalšia iterácia je k nemu bližšie.

Koniec

V prípade r = 3.2 je podľa predpokladu pevný bod nestabilný repeler a po priblížení sa k nemu sú iterácie odpudzované. Zdá sa však, že sa nebudú neohraničene vzďaľovať, ale "sa ustália", čo sa na grafe prejaví vytvorením obdĺžnika. Ako neskôr uvidíme, v tomto prípade sa proces zacyklí — s periódou 2 sa budú opakovať dve hodnoty (samozrejme s určitou presnosťou).

Obrázok 19 okrem funkcie $f_{3,2}(x)$ znázorňuje aj funkciu $f_{3,2}[f_{3,2}(x)]$. Je zrejmé, že spomenutý cyklus vytvoria práve pevné body zobrazenia f(f(x)), ktoré budeme ďalej označovať $f^{[2]}(x)$.⁹ Podobne budeme označovať

$$\underbrace{f(f(\cdots(f(x))\cdots))}_{n\text{-krát}} \triangleq f^{[n]}(x)$$

Každý pevný bod zobrazenia f(x) je samozrejme pevným bodom zobrazení $f^{[n]}(x)$, pre $n \ge 1$. Ako sme sa presvedčili na obrázku 19, môže mať zobrazenie $f^{[2]}(x)$ okrem pevných bodov zobrazenia f(x) aj "svoje vlastné" pevné body, ktoré nie sú pevnými pre f (tak to bolo aj v prípade Bernoulliho a trojuholníkového zobrazenia). Ak tieto pevné body označíme x_3^* a x_4^* , môžeme rovnako, ako sme to urobili na strane 131, dokázať, že $f(x_3^*) = x_4^*$ a $f(x_4^*) = x_3^*$.

Aké sú príčiny uvedených javov? Pozrime sa na dve funkcie na obrázku 18. So zväčšovaním parametra *r* sa dvíha maximálna hodnota v strede intervalu a zároveň sa posúva doprava priesečník osi y = x s grafom fun-

Domovská stránka
Titulná strana
Obsah
 ▲
Strana 138 z 348
Späť
Celá strana
Zeterent
Zatvorit
Koniec

⁹Nepomýľte si to s druhou mocninou funkcie *f*!

kcie. Rastie tiež uhol, ktorý zviera dotyčnica ku funkcii v tomto pevnom bode s osou *x*. Je preto prirodzené, že derivácia funkcie *f* v pevnom bode prekročí v absolútnej hodnote hodnotu 1, čo má za následok stratu stability. Veľmi zaujímavé však je to, že práve v tom momente sa zrodia dva nové pevné body zobrazenia $f^{[2]}$, rovnako, ako sa to stalo pri bifurkačnej hodnote r = 1, keď sa v momente straty stability nulového pevného bodu objavil nový pevný bod.

Kým o funkcii f(x) máme celkom dobré intuitívne predstavy, myslím si, že nám chýbajú podobné predstavy o funkciách $f^{[2]}$, $f^{[3]}$, atď. Ako sa tieto menia s rastom parametra r? Niekoľko ďalších obrázkov ukazuje grafy funkcií $f^{[2]}$, $f^{[3]}$ a $f^{[4]}$ pri rôznych hodnotách parametra r.

Pozorne si prezrite grafy na obrázku 20. V prípade funkcie $f^{[3]}(x)$ sa zatiaľ neobjavili ďalšie pevné body. Avšak je zrejmé, že so zväčšovaním hodnoty parametra sa pravé maximum časom dotkne osi y = x a neskôr ju aj pretne, čím vzniknú viaceré pevné body. Funkcie $f^{[2]}$ a $f^{[4]}$ v pravom pevnom bode pretínajú os najprv pod miernym uhlom, potom sa jej spoločne dotýkajú pri hodnote r = 3, aby ju vzápätí preťali, čím vzniknú dva nové pevné bodu zobrazenia $f^{[2]}(x)$ a teda samozrejme aj $f^{[4]}(x)$! Pri hodnote r = 3.449 vzniká podobná situácia pre samotnú funkciu $f^{[4]}(x)$, keď sa v obidvoch pevných bodoch $f^{[2]}(x)$ dotýka osi y = x a pri ďaľšom zväčšovaní hodnoty parametra sa objavujú "vlastné pevné body" $f^{[4]}(x)$, ktoré už nie sú pevné pre $f^{[2]}(x)$. Tak vznikajú cykly s periódou štyri. Podobne sa situácia zopakuje pri funkciách $f^{[8]}(x)$, $f^{[16]}(x)$, a pod. Takáto schéma

Obr. 20: Grafy funkcií f, $f^{[2]}$, $f^{[3]}$ a $f^{[4]}$ pri hodnotách parametra r = 2.8, 3.0, 3.449 a 3.52

sa nazýva bifurkácia zdvojenia cyklu. So zväčšovaním periódy cyklu sa zväčšuje aj zložitosť celkového obrazu iterácií, až kým pri istej hodnote parametra $r = r_{\infty}$ nenastane situácia, keď iterácie zapĺňajú celý interval. Vtedy hovoríme o prechode do **chaotického režimu**.

5.3. Dvojité singulárne body logistického zobrazenia

V kapitole 3.1.3 sme sa venovali teórii bifurkácií v prípade dvojitých singulárnych bodov. Ak uvažujeme zobrazenie f(x), tak potom x^* je pevným bodom zobrazenia f, ak je nulovým bodom g(x) = f(x) - x. Uvažujme teda zobrazenie s parametrom μ a pokúsme sa zistiť, či má dvojité singulárne body:

$$g(\mu, x) = \mu \left(x - x^2 \right) - x$$

Hľadáme také body, pre ktoré je $g'_{\mu} = 0$ a zároveň $g'_{x} = 0$. Teda má platiť

$$g'_{\mu}|_{(\mu,x)^*} = (x-x^2)|_{(\mu,x)^*} = 0$$
 $g'_{x}|_{(\mu,x)^*} = [\mu(1-2x)-1]|_{(\mu,x)^*} = 0.$

Táto sústava má dve riešenia $(\mu_1, x_1) = (1, 0)$ a $(\mu_2, x_2) = (-1, 1)$, avšak druhé riešenie nevyhovuje podmienke $g(\mu_2, x_2) = 0$. Teda rovnica má jediný dvojitý singulárny bod. Skúmajme podľa postupu uvedeného v oddieli 3.1.3 druhé derivácie funkcie *g*.

$$g''_{\mu\mu} = 0, \quad g''_{\mu x} = 1 - 2 x, \quad g''_{xx} = -2 \mu.$$

V uvažovanom bode $(\mu_1, x_1) = (1, 0)$ platí $g''_{\mu\mu}|_{(\mu_1, x_1)} = 0$, $g''_{\mu\nu}|_{(\mu_1, x_1)} = 1$ a $g''_{xx}|_{(\mu_1, x_1)} = -2$. Nastáva teda prípad (B) zo strany 91, keď existujú dve rôzne dotyčnice ku krivke $g(\mu, x) = 0$ v bode (μ_1, x_1) s tangensami uhlov rovnými $x'_{\mu}(\mu_1) = 0$ a $\mu'_{x}(x_1) = -g''_{xx}/2g''_{\mu x} = -(-2)/(2 \cdot 1) = 1$ (pozri obrázok 12). V bode (1, 0) sa pretínajú dve krivky, určené rovnicou μ ($x - x^2$) – x = 0. Jedna má rovnicu x = 0 a druhá μ (1 - x) – 1 = 0, a teda $x = 1 - 1/\mu$. Jej smernica $1/\mu^2$ je v bode $\mu = 1$ rovná 1, čo zodpovedá výpočtom. Navyše podľa obrázka vidíme, že stabilný stacionárny bod x =0 sa stáva ďalej nestabilným, stabilita prechádza na druhú vetvu krivky $g(\mu, x) = 0$.

Keďže zobrazenie f nemá viac dvojitých singulárnych bodov, musíme ďalej hľadať dvojité singulárne body zobrazenia $f^{[2]}$. Tu už je situácia značne zložitejšia. Na výskum bifurkačných bodov $f^{[2]}$ musíme uvažovať dvojité singulárne body $g^{[2]}(x) = f^{[2]}(x) - x$. Máme

$$g^{[2]}(\mu, x) = \mu^2 (x - x^2) - \mu^3 (x - x^2)^2 - x$$

۰.	-	
	-	
s.	-	
-		

$$g^{[2]'}_{\mu} = 2 \,\mu \,(x - x^2) - 3 \,\mu^2 \,(x - x^2)^2,$$
$$g^{[2]'}_{x} = \mu^2 \,(1 - 2 \,x) - \mu^3 \,2 \,(x - x^2)(1 - 2 \,x) - 1$$

Sústava rovníc $g^{[2]'}_{\mu} = 0$, $g^{[2]'}_{x} = 0$ je už dostatočne nepríjemná a navyše nejasná. Môžeme vidieť, že jedným z riešení prvej rovnice je x = 0, na základe čoho z druhej rovnice dostávame $\mu^2 = 1$ a odtiaľ máme $\mu = 1$,

keďže neuvažujeme záporné $\mu = r$. Riešením prvej rovnice je tiež x = 1, po jeho dosadení do druhej rovnice však dostávame $\mu^2 = -1$, čo nemá riešenie. Po vykrátení člena $\mu (x - x^2)$ v prvej rovnici dostaneme upravenú prvú rovnicu

$$2 - 3\,\mu\,(x - x^2) = 0,$$

z ktorej vyjadríme $\mu = 2/[3(x - x^2)]$. Túto hodnotu μ dosadíme do druhej rovnice a po úprave dostaneme rovnicu, obsahujúcu len *x*:

$$27 x^4 - 54 x^3 + 27 x^2 - 8 x + 4 = 0.$$
(58)

Hoci pre rovnicu 4. stupňa existujú *Ferrariho* vzorce, vidíme, že tento spôsob výskumu už pri zobrazení $f^{[4]}$ zrejme nebude použiteľný. Použijeme nasledujúci **podvod**: z predchádzajúcej kapitoly už vieme, že r = 3 je ďalší bifurkačný bod, ktorému odpovedá hodnota x = 2/3. Dosadíme teda do Hornerovej schémy pre rovnicu (58) x = 2/3:

Nula vpravo dole dokazuje, že x = 2/3 je riešením rovnice (58). Po dosadení za *x* dostávame $\mu = 2/[3(2/3 - 4/9)] = 3$. Nulovým bodom $g^{[2]}$ je skutočne bod (μ , x) = (3, 2/3).

Rovnica, ktorá ešte ostáva (pozri spodný riadok tabuľky delený tromi)

$$9\,x^3 - 12\,x^2 + x - 2 = 0$$

má ešte jedno reálne riešenie $x_2 \in (1, 2)$. Keďže momentálne sa zaujímame o interval (0, 1), dvojitý singulárny bod je teda len v bode $(\mu, x) = (3, 2/3)$. Ďalším derivovaním a dosadením tohoto bodu do druhých parciálnych derivácií sa môžete presvedčiť, že tentoraz sa jedná o prípad (A) a navyše o situáciu e) na obrázku 12 (overte, že $g^{[2]}{}_{\mu\mu}^{\prime\prime} = -4/3$, $g^{[2]}{}_{\mu\chi}^{\prime\prime} = 2 a g^{[2]}{}_{xx}^{\prime\prime} = 0$).

5.4. Bifurkácia zdvojenia cyklu

V tejto časti ukážeme, že vznik nových pevných bodov zobrazenia $f^{[2]}$ práve v momente straty stability pevného bodu zobrazenia f sa netýka len Verhulstovho logistického zobrazenia (56). Nie je to žiadna "zhoda okolností" ale je to charakteristická vlastnosť širokej triedy zobrazení. Nižšie budeme predpokladať, že existujú 3 spojité derivácie funkcie f_r a spojitú závislosť funkcie f_r a jej derivácií od parametra r.

Definícia 47. Výraz

$$Sf = \frac{f'''}{f'} - \frac{3}{2} \left[\frac{f''}{f'}\right]^2 \tag{59}$$

sa nazýva Schwarzova derivácia.

Poznámka 5.2. Keďže

$$\frac{\mathrm{d}^2}{\mathrm{d}x^2} \frac{1}{\sqrt{f'}} = -\frac{1}{2\sqrt{f'}} \left(\frac{f'''}{f'} - \frac{3}{2} \left[\frac{f''}{f'} \right]^2 \right),$$

môžeme písať, že

$$\mathcal{S}f \sim \frac{\mathrm{d}^2}{\mathrm{d}x^2} \frac{1}{\sqrt{f'}}.$$

Poznámka 5.3. Hoci Schwarz pôsobil v 19. storočí, ako prvý na dôležitosť Schwarzovej derivácie upozornil Singer v roku 1978, keď ukázal, že unimodálne zobrazenie so zápornou Schwarzovou deriváciou Sf < 0 nemôže mať viac ako jeden periodický atraktor.

Veta. Ak je Sf < 0, potom je aj $Sf^{[2]} < 0$.

Dôkaz. Veta sa dá dokázať priamo použitím "reťazového" pravidla derivovania zložených funkcií:

$$f^{[2]'}(x) = [f(f(x))]' = f'(f(x)) \cdot f'(x),$$

$$f^{[2]''}(x) = [f'(f(x)) \cdot f'(x)]' = f''(f(x)) \cdot (f'(x))^2 + f'(f(x)) \cdot f''(x).$$

Úloha 33. Dokážte tvrdenie predchádzajúcej vety.

Veta (o zdvojení cyklu). Nech pevný bod x_r^* funkcie f_r stráca stabilitu pri $r = r_1$, teda $f'_{r_1}(x_{r_1}^*) = -1$ a $f'_r(x_r^*) < -1$ pre $r > r_1$. Nech d'alej $Sf_{r_1} < 0$ v okolí bodu $x_{r_1}^*$. Potom platia nasledujúce tvrdenia:

- 1. $x_{r_1}^*$ sa pri $r = r_1$ stáva nestabilným aj vzhľadom na $f_r^{[2]}$.
- 2. Existuje taký interval $(r_1, r_1 + \delta)$, na ktorom má $f^{[2]}$ pre každé r okrem nestabilného pevného bodu x^* aj dva stabilné pevné body x_1^*, x_2^* .
- 3. Pre obidva stabilné pevné body x_1^* a x_2^* platí:

a)
$$x_1^* \to x_{r_1}^*$$
 a $x_2^* \to x_{r_1}^*$ pri $r \to r_1$,

b)
$$f(x_1^*) = x_2^* a f(x_2^*) = x_1^*$$
,

c) x_1^* a x_2^* strácajú stabilitu súčasne.

Poznámka 5.4. Predchádzajúce vety sú uvedené napríklad v knihe (HE-INRICHS, 1993).

Dôkaz. Uvažujme $r > r_1$ také, že pre pevný bod je $f'_r(x^*_r) < -1$. Potom platí

$$f^{[2]'}(x_r^*) = f'(f(x_r^*)) \cdot f'(x_r^*) = f'(x_r^*) \cdot f'(x_r^*) = [f'(x_r^*)]^2 > 1$$

a teda platí tvrdenie 1.

Je zrejmé, že $f^{[2]'}(x_{r_1}^*) = 1$. Uvažujme druhú deriváciu $f^{[2]''}(x_{r_1}^*)$. Ako

bolo ukázané vyššie, je

$$f^{[2]''}(x_{r_1}^*) = f''(f(x_{r_1}^*)) \cdot (f'(x_{r_1}^*))^2 + f'(f(x_{r_1}^*)) \cdot f''(x_{r_1}^*) =$$

= $f''(x_{r_1}^*) \cdot (f'(x_{r_1}^*))^2 + f'(x_{r_1}^*) \cdot f''(x_{r_1}^*) = f''(x_{r_1}^*) \cdot [1-1] = 0$

Ďalej z podmienky $Sf^{[2]} < 0$ vyplýva, že $f^{[2]'''}(x_{r_1}^*) < 0$.

Ak pre funkciu $f^{[2]}(x)$ použijeme Taylorovu vetu so stredom v bode $x_{r_1}^*$ dostávame

$$f_{r_1}^{[2]}(x) = x_{r_1}^* + (x - x_{r_1}^*) + 0 + \frac{f_{r_1}^{[2]'''}(\xi)}{6}(x - x_{r_1}^*)^3$$

pričom $f^{[2]}_{r_1}^{\prime\prime\prime}(\xi) < 0$ na základe spojitosti 3. derivácie $f^{[3]}$. Pri vyššie spomenutých predpokladoch bude aj pre $r > r_1$ platiť

$$f_r^{[2]}(x) = x_r^* + a_r(x - x_r^*) + b_r(x - x_r^*)^2 + c_r(x - x_r^*)^3,$$
(60)

pričom $a_r > 1$, $a_r \to 1$, $x_r^* \to x_{r_1}^*$ a $b_r \to 0$ pre $r \to r_1$ a $c_r < 0$ v určitom intervale $(r_1, r_1 + \delta)$ (c_r závisí od hodnoty x!). Ak budeme uvažovať rovnicu pevného bodu $x = f_r^{[2]}(x)$, po substitúcii $z = x - x_r^*$ dostávame na základe (60) rovnicu

$$z \cdot (-1 + a_r + b_r z + c_r z^2) = 0.$$
(61)

Pri *r* dostatočne blízkych ku r_1 môžeme považovať c_r za konštantné (pritom riešenia (61) budú "blízke" ku pevným bodom $f_r^{[2]}$. Riešenie z = 0 samozrejme odpovedá pevnému bodu x_r^* . Diskriminant kvadratického výrazu v zátvorke je

$$b_r^2 - 4\,c_r\,(a_r - 1) > 0$$

a teda rovnica (61) má okrem z = 0 ešte ďalšie dve riešenia

$$z_{1,2} = \frac{-b_r \pm \sqrt{b_r^2 - 4c_r(a_r - 1)}}{2c_r}$$

pre ktoré zrejme platí $z_{1,2} \rightarrow 0$ pre $r \rightarrow r_1$. To dokazuje tvrdenia 2 a 3a. Tvrdenie 3b sa dokazuje rovnako, ako sme to urobili na strane 131.

Keďže $f^{[2]'}(x_1^*) = f'(f(x_1^*)) \cdot f'(x_1^*) = f'(x_2^*) \cdot f'(x_1^*) = f^{[2]'}(x_2^*)$ sú obidva pevné body zobrazenia $f^{[2]}$ súčasne stabilné alebo nestabilné.

Ak budeme uvažovať pomocnú funkciu $h_r(x) = f_r^{[2]}(x) - x$, má táto funkcia práve tri nulové body $x_{r_1}^*$, x_1^* a x_2^* . Ale $h'_r(x_{r_1}^*) = f_r^{[2]'}(x_{r_1}^*) - 1 > 0$, a preto musia byť $h'_r(x_1^*)$ aj $h'_r(x_2^*)$ záporné. Keďže

$$|h'_r(x^*_{1,2})| \doteq |-1 + a_r + 2b_r(x - x^*_{r_1}) + 3c_r(x - x^*_{r_1})^2| \to 0$$

pre $r \rightarrow r_1$ bude $-1 < f_r^{[2]'}(x_{1,2}^*) = h'_r(x_{1,2}^*) + 1 < 1$. To dokazuje stabilitu pevných bodov $x_{1,2}^*$ pri r dostatočne blízkych ku r_1 .

Domovská stránka
Titulná strana
Obsah
< →
• •
Strana 149 z 348
Späť
Celá strana
Zatvoriť
Koniec

Poznámka 5.5. Pri uvažovaní funkcie $h(x) = f^{[2]}(x)$, $h^{[2]} = f^{[4]}(x)$, po aplikovaní práve dokázanej vety môžeme potom konštatovať, že dva stabilné pevné body zobrazenia $f^{[2]}$ sa po bifurkácii v bode r_2 nahradia štyrmi stabilnými bodmi zobrazenia $f^{[4]}$. Pôvodné pevné body sa stávajú nestabilnými a sú zároveň pevnými pre $f^{[2]}$ aj pre $f^{[4]}$. Takto vzniká cyklus s periódou 4. Teda cyklus s periódou 2 sa zmenil na cyklus s periódou 4. Podobne môžeme vety aplikovať pre ďalšie mocniny $f^{[2^n]}$. To vysvetľuje, prečo sme vetu nazvali "Veta o zdvojení cyklu".

Definícia 48. Množinu bodov, ku ktorej konvergujú body postupnosti $f^{[n]}(x_0)$ (v zmysle konvergencie v Hausdorfovej metrike) pre rôzne x_0 budeme nazývať **atraktorom**.

Poznámka 5.6. Pre hodnoty $r \leq 1$ je atraktorom logistického zobrazenia množina obsahujúca jediný bod x = 0. Pre $1 < r \leq 3$ je atraktorom množina $\{0, 1 - 1/r\}$. Tu sa dopúšťame istej nesystémovosti, keď do množiny atraktora zaraďujeme repeler x = 0, ale po formálnej stránke bod x = 0 patrí v zmysle definície do **atraktora**, pretože $\lim_{n\to\infty} f^{[n]}(0) = 0$. Ďalej sa pre $3 < r \leq r_2$ ($r_2 \doteq 3.449$) stáva atraktorom množina $\{0, 1 - 1/r, x_1^*, x_2^*\}$ s dvomi repelermi a dvomi stabilnými bodmi $f^{[2]}$ (ale nie f!), atď.

Obrázok 21 ilustruje vetu o zdvojení cyklu. Na ľavej strane sú znázornené logistické funkcie f a $f^{[2]}$ pri hodnote parametra $r_1 = 3$ a funkcie f, $f^{[2]}$ a $f^{[4]}$ pri hodnote parametra $r_2 = 3.449$.

Obr. 21: Bifurkácie "zdvojenia cyklu" pre polynóm druhého (vľavo) a pre polynóm štvrtého stupňa, definovaný v (62)

Pravá strana znázorňuje podobnú situáciu pre funkciu

$$f(x) = r x^2 (1-x)^2$$
(62)

pri hodnotách parametrov $r_1 = 10.5$ a $r_2 = 11.85$.

Na obidvoch obrázkoch vidíme, ako pri zväčšovaní hodnoty r stráca stabilitu najskôr pevný bod f a neskôr aj pevné body $f^{[2]}$. Pri d'alšom zväčšovaní r sa situácia zopakuje s $f^{[4]}$, atd'.

Úloha 34. Dokážte, že po prechode cez hodnotu r_2 , keď sa stráca stabilita dvoch pevných bodov $f^{[2]}$, štyri nové pevné body $f^{[4]}$ vytvoria cyklus s periódou 4.

5.5. Univerzálne správanie kvadratických zobrazení

Overme možnosť aplikovania Vety o zdvojení cyklu v prípade logistického zobrazenia. Ľahko ukážeme, že Sf < 0, keďže $f'''(x) \equiv 0$. Preto sa pri narastaní hodnoty parametra *r* objavujú bifurkácie zdvojenia cyklov.

Na obrázku 22 je znázornená závislosť (stabilných) pevných bodov (resp. cyklov) logistického zobrazenia od hodnoty parametra *r*. Graf bol získaný nasledujúcim spôsobom: pre zvolené hodnoty parametra *r* sa vždy najprv uskutočnilo určité množstvo iterácií, v tomto prípade 500. Po tomto množstve sa už dá očakávať, že sa body budú nachádzať v blízkosti atraktora. Preto všetky nasledujúce iterácie, ktorých hodnoty sa nanášajú na graf, by už mali byť blízko pevných bodov jednotlivých mocnín $f^{[2^n]}$.

Obrázok nie je veľmi kvalitný, ale dostatočne ilustruje bifurkácie, popísané v predchádzajúcej časti. Kvalitnejšie obrázky sa dajú nájsť prakticky v každej knižke o chaose, napr. v (CROWNOVER, 1995; HEINRICHS, 1993; SCHUSTER, 1984; PEITGEN a RICHTER, 1986). Predovšetkým je však potrebné odporučiť navštívenie WWW stránok s appletmi a pozrieť si veľmi pekné obrázky súvisiace s chaotickou dynamikou.

Na ľavom obrázku je okrem stabilných pevných bodov zobrazená aj krivka pevného bodu zobrazenia f, ktorý sa po prvej bifurkácii stal nestabilným repelerom (pri zmene parametra r sa posúva, nadobúda hodnoty 1 - 1/r). Na pravom obrázku je znázornená len spodná vetva, pre väčšie hodnoty r. Ako vidieť, situácia sa opakuje, navyše pravý obrázok, ktorý sme získali vyrezaním časti ľavého obrázka a zväčšením, sa nápadne podobá na ľavý obrázok. Tento jav sa nazýva samopodobnosť a podrobnejšie sa ním budeme zaoberať v časti venovanej fraktálom.

Na obidvoch obrázkoch je ešte vynesená priamka x = 0.5 rovnobežná s osou *r*. Táto súvisí s tzv. supercyklami, o ktorých si povieme niekoľko slov.

5.5.1. Supercykly

Môžeme si položiť nasledujúcu otázku: Za akých podmienok je pevný bod "najatraktívnejší"? Podľa Banachovej vety o pevnom bode je zobrazenie

"najkontraktívnejšie"¹⁰ vtedy, ak sa konštanta q z definície kontraktívnosti rovná 0. Vtedy sa všetky body po jednej iterácii dostávajú do pevného bodu.

Pevný bod x_r^* , pre ktorý platí $f^{[n]'}(x_r^*) = 0$ budeme nazývať **superstabilným bodom**. Je zrejmé, že $f_r(x)$ má jediný superstabilný bod x = 1/2 pri hodnote r = 2. Vyplýva to zo vzťahu (57).

Aké sú podmienky toho, aby bol niektorý bod superstabilný pre $f^{[n]}$? Keďže prvá derivácia v tomto bode je nulová, musí byť tento bod extrémom funkcie $f^{[n]}(x)$. Uvažujme napríklad zobrazenie $f^{[2]}$. Ako sme už uviedli, toto zobrazenie môže mať dva pevné body, v ktorých platí $f^{[2]'}(x_1^*) = f^{[2]'}(x_2^*)$. Ak je jeden z nich superstabilný, je superstabilný aj druhý (analogicky to platí aj pre zobrazenia $f^{[4]}, f^{[8]}, \ldots$). Jeden extrém má však funkcia $f^{[2]}(x)$ práve v bode x = 1/2. Platí teda, že $x_r^* = 1/2$. Ale potom aj $f^{[2]}(1/2) = 1/2$, pretože 1/2 je pevný bod. Ak sa pozrieme na grafy na obrázku 22, uvidíme na ľavom z nich prvý priesečník zľava priamky x = 1/2 s grafom stabilných bodov. Tento bod označíme R_1 . Druhý priesečník v poradí označíme R_2 , ten je zasa prvý na pravom obrázku, kde nájdeme ešte jeden priesečník R_3 .

Okrem toho sa ešte skúmajú rozdiely

$$d_n = f_{R_n}^{[2^{n-1}]} \left(\frac{1}{2}\right) - \frac{1}{2},\tag{63}$$

¹⁰Na tomto miesto na lepšiu predstavivosť používame nedefinované pojmy, ktoré podľa nášho názoru vystihujú podstatu problému.

ktorých veľkosť je vzdialenosť priesečníka priamky x = 1/2 s vetvou **bifurkačného diagramu** od najbližšej vetvy.

5.5.2. Feigenbaumova univerzalita

Môžeme si všimnúť, že vzdialenosť medzi nasledujúcimi hodnotami

 $r_1 < R_1 < r_2 < R_2 < \cdots < r_n < R_n < \cdots$

sa neustále skracuje. Existuje $r_{\infty} = \lim_{n \to \infty} r_n = \lim_{n \to \infty} R_n = R_{\infty}$, teda spomínané skracovanie dĺžok je dostatočne rýchle. Ukazuje sa, že približovanie sa hodnôt r_n k limitnej hodnote veľmi dobre vystihuje geometrická postupnosť, pričom platí nasledujúca veta:

Veta (o Feigenbaumovej univerzalite). Nech funkcie f_r spĺňajú nasledujúce podmienky:

1. Funkcie f_r majú jediné kvadratické maximum nad osou y = x.

2. Funkcie majú zápornú Schwarzovu deriváciu Sf_r .

3. $H(f_r) \subset D(f_r)$.

Potom pre $n \gg 1$ platí

$$r_n \approx r_\infty - k_1 \, \delta^{-n}, \tag{64}$$

$$R_n \approx R_\infty - k_2 \, \delta^{-n}, \tag{65}$$

$$d_n \approx k_3 [-\alpha]^{-n}. \tag{66}$$

Pritom konštanty k_1 , k_2 a k_3 sú závislé na množine funkcií f_r , ale konštanty δ a α sú univerzálne, tedá nezávislé od f_r .

$$\delta = 4.6692016091... \tag{67}$$

$$\alpha = 2.5029078750... \tag{68}$$

Dôkaz. Náčrt dôkazu môžete nájsť napr. v knihách (HEINRICHS, 1993; SCHUSTER, 1984). Opiera sa o tzv. škálovanie funkcií, využívajúce podobnosť grafov $f, f^{[2]}, f^{[4]}, \ldots$ (pozri napr. obrázok 19) v okolí priesečníka grafu s osou y = x v superstabilnom bode (princíp renormalizačných grúp).

Poznámka 5.7. Hovoríme, že funkcia f(x) má v stacionárnom bode x^* **kvadratické maximum**, ak platí $f''(x^*) < 0$.

Domovská stránka Titulná strana Obsah •• Strana 157 z 348 Späť Celá strana Zatvoriť Koniec

Poznámka 5.8. Je veľmi zaujímavé, že Feigenbaumove konštanty α a δ **nezávisia od spôsobu parametrizácie** (napríklad by nám niekto mohol vyčítať, že používame stupne Kelvina namiesto Farenheita).

Aby sme sa o tom presvedčili, zvoľme novú parametrizáciu

 $\hat{r} = g(r),$

kde g(r) je nejaká diferencovateľná funkcia. Potom platí

$$\hat{r}_n - \hat{r}_\infty = g(r_n) - g(r_\infty) = g'(\xi) \left(r_n - r_\infty \right) \doteq - g'(r_\infty) k_1 \, \delta^{-n} \approx -\hat{k}_1 \, \delta^{-n}.$$

Teda $\hat{r} = \hat{r}_{\infty} - \hat{k}_1 \, \delta^{-n}$.

Domovská stránka
l itulna strana
Obsah
•• ••
Strana 158 z 348
Späť
Celá strana
Zatvoriť
Koniec

Prečo často nazývajú geometriu chladnou a suchou? Jeden z dôvodov spočíva v jej neschopnosti popísať tvar oblakov, hôr, stromu alebo morského pobrežia. Oblaky — to nie sú gule, hory — to nie sú kužele, pobrežné línie — nie sú kružnice, kôra nie je hladká, ani blesk sa nešíri po priamke. . . Príroda nám ukazuje nielen jednoducho vyššiu úroveň, ale úplne inú úroveň zložitosti. Počet rôznych škál dĺžok v štruktúrach je vždy nekonečný.

V roku 1975 som vymyslel názov fraktál, aby som pomenoval svoju prvú prácu v tejto oblasti. Avšak neuviedol som matematickú definíciu, cítiac, že tento pojem, rovnako ako dobré víno, musí dozrieť predtým, než bude "rozliate do fliaš". Všetky tvary, ktoré som skúmal a nazýval fraktály, mali v mojich predstavách vlastnosť byť "nepravidelnými ale samopodobnými".

Mandelbrot, 1984 (PEITGEN a RICHTER, 1986).

6. Fraktály

V tejto časti sa zoznámime s pojmami fraktál, samopodobnosť, s rôznymi dimenziami a spôsobmi konštruovania "matematických" fraktálov. Na záver uvidíme, ako vznikajú krásne zobrazenia Juliovych a Mandelbrotovych množín.

6.1. Cantorova množina

Klasická **Cantorova množina** alebo tiež **Cantorov prach** je pomenovaná podľa G. Cantora, ktorý ju popísal v roku 1883, hoci jej existenciu uvádzal predtým H. Smith v roku 1875 alebo ešte skôr (CROWNOVER, 1995).

Uvažujme na začiatku množinu $C_0 = \langle 0, 1 \rangle$. Odobratím strednej tretiny — intervalu (1/3, 2/3) — získame z množiny C_0 novú množinu, ktorú označíme C_1 , teda $C_1 = \langle 0, 1/3 \rangle \cup \langle 2/3, 1 \rangle$. V ďalšom kroku z obidvoch podintervalov, z ktorých pozostáva množina C_1 , znovu odoberieme strednú tretinu (otvorený interval) a takto získame množinu C_2 , atď.

Takým spôsobom získame postupnosť množín C_n

$$C_{0} = \langle 0, 1 \rangle$$

$$C_{1} = \langle 0, 1/3 \rangle \cup \langle 2/3, 1 \rangle$$

$$C_{2} = \langle 0, 1/9 \rangle \cup \langle 2/9, 1/3 \rangle \cup \langle 2/3, 7/9 \rangle \cup \langle 8/9, 1 \rangle$$

$$\vdots$$

$$C_{n} = ?$$

$$\vdots$$

$$C = ?$$

Množiny C_n pre každé konečné *n* budeme nazývať **predfraktály** (FEDER, 1988). Vzniká prirodzená otázka. Čo je limitou postupnosti $\{C_n\}_{n=0}^{\infty}$, existuje vôbec nejaká limita?

Obr. 23: Cantorove predfraktály

Prvých pár množín je znázornených na obrázku 23. V ďalšej časti tohoto oddielu sa budeme venovať rôznym otázkam, spojeným s Cantorovou množinou C.

6.1.1. Existencia Cantorovej množiny

Všimnime si, že rovnakú postupnosť množín C_n , môžeme získať aj "iným" spôsobom. Vlastne sa v tomto prípade jedná o iný spôsob popisu prechodu od množiny C_{n-1} ku množine C_n .

Uvažujme dve afinné zobrazenia T_1 : $\mathbb{R} \to \mathbb{R}$ a T_2 : $\mathbb{R} \to \mathbb{R}$ dané vzťahmi

$$T_1(x) = \frac{1}{3}x$$
, a $T_2(x) = \frac{1}{3}x + \frac{2}{3}$

Všimnime si, že obidve zobrazenia T_1 aj T_2 sú afinné a zároveň kontraktív-

ne, s koeficientmi kontraktívnosti $r_1 = r_2 = 1/3$. Ďalej uvažujme *zobrazenie Hutchinsona* (pozri oddiel 4.2.3) $T : \mathcal{K} \to \mathcal{K}$ definované ako $T(E) = T_1(E) \cup T_2(E)$, $E \in \mathcal{K}$, kde \mathcal{K} je množina kompaktov na \mathbb{R} .

Ak zvolíme $E_0 = C_0 = \langle 0, 1 \rangle$ (je to samozrejme kompaktná podmnožina \mathbb{R}), nie je ťažké sa presvedčiť, že $T(C_1) = T(C_0)$, ale tiež $T(C_2) = T(C_1)$, atď. Teda zobrazenie T spolu s iteračnou postupnosťou definovanou vzťahmi

 $\mathbf{T}(\mathcal{C}_n) = \mathbf{T}(\mathcal{C}_{n-1}), \qquad n = 1, 2, \dots$

vytvára *systém iterovaných funkcií* (SIF). Na základe vety o konvergencii postupností SIF (oddiel 4.2.3) môžeme teda tvrdiť, že existuje limita

$$\mathcal{C} = \lim_{n \to \infty} \boldsymbol{T}^{[n]}(\langle 0, 1 \rangle)$$

Zároveň môžeme konštatovať, že Cantorova množina C je neprázdna a *kompaktná*.

6.1.2. Mohutnosť Cantorovej množiny

Všimnime si najprv súčet dĺžok odobratých intervalov. V prvom kroku sme odobrali jeden interval dĺžky 1/3, v druhom kroku dva intervaly dĺžky 1/9, v treťom kroku štyri intervaly dĺžky 1/27, atď. Celková dĺžka teda bude

$$L = \frac{1}{3} + \frac{2}{9} + \frac{4}{27} + \dots = \frac{1}{3} \left[1 + \frac{2}{3} + \left(\frac{2}{3}\right)^2 + \dots \right] = \frac{1}{3} \frac{1}{1 - \frac{2}{3}} = 1.$$

Teda sme odobrali prakticky celý interval. Ostalo ešte vôbec niečo? Môžeme si všimnúť, že ostali minimálne kraje intervalov. Tých je *spočítateľné* množstvo (o spočítateľnosti si povieme pár slov o chvíľu). Po krátkej odbočke do oblasti *mohutnosti množín* budeme schopní odpovedať na otázku o "počte" prvkov Cantorovej množiny.

Definícia 49. Množiny *A* a *B* budeme nazývať **ekvivalentnými** práve vtedy, ak existuje bijektívne zobrazenie množiny *A* na množinu *B*. Vtedy hovoríme, že množiny *A* a *B* majú rovnakú **mohutnosť** a píšeme:

|A| = |B| alebo card $A = \operatorname{card} B$.

Definícia 50. Množinu *A* nazývame **konečná** práve vtedy, ak existuje také prirodzené číslo *n*, že *A* je ekvivalentná s množinou $\{1, 2, ..., n\}$ alebo je *A* prázdna. Množina *A* je nekonečná práve vtedy, ak nie je konečná.

V prípade konečných množín môžeme stotožniť pojmy mohutnosť a počet prvkov. Premyslite si to! Ale zaujímavé je to, že aj medzi nekonečnými množinami sa vyskytujú množiny s rôznymi mohutnosťami.

Definícia 51. Nekonečná množina *A* sa nazýva **spočítateľná** práve vtedy, ak $|A| = |\mathbb{N}|$, kde \mathbb{N} je množina prirodzených čísel.

Spočítateľné sú teda tie množiny, ktorých prvky dokážeme očíslovať pomocou nekonečného počtu indexov.

Príklad 34. Spočítateľné množiny sú napríklad: \mathbb{N} – množina prirodzených čísel; \mathbb{N}_0 – množina prirodzených čísel, rozšírená o nulu; \mathbb{Z} – množina všetkých celých čísel; \mathbb{Q} – množina všetkých racionálnych čísel.

Keď si uvedomíme, že spočítateľnosť vlastne znamená "rovnaký počet prvkov", je prekvapivé, že hoci sa nám zdá, že celých čísel je zhruba dvakrát toľko ako prirodzených, predsa ich je "rovnako veľa". Ešte menej očakávaný je fakt, že aj všetky racionálne čísla sú spočítateľné — to je v úplnom rozpore s našou predstavou, že ich je nekonečnekrát viac ako prirodzených, veď predsa medzi ľubovoľnými dvomi prirodzenými číslami na číselnej osi sa nachádza nekonečne veľa racionálnych čísel.

Príklad 35. Nespočítateľné množiny sú napríklad: množina iracionálnych čísel; \mathbb{R} – množina reálnych čísel.

To je ďalší prekvapivý fakt. Ukazuje sa, že reálnych čísel je "omnoho viac" ako racionálnych, hoci aj medzi ľubovoľnými dvoma reálnymi číslami sa nachádza aspoň jedno racionálne číslo.

Veta (o spočítateľnosti množiny racionálnych čísel). Množina racionálnych čísel \mathbb{Q} je spočítateľná, t. j. existuje vzájomne jednoznačné zobrazenie $\mathbb{Q} \stackrel{\varphi}{\leftrightarrow} \mathbb{N}$.

Dôkaz. Najskôr dokážeme spočítateľnosť racionálnych čísel z intervalu (0, 1). Ukážeme, ako môžeme tieto racionálne čísla očíslovať. Označíme $r_1 = 0$, $r_2 = 1/2$, $r_3 = 1/3$, $r_4 = 2/3$, $r_5 = 1/4$, $r_6 = 3/4$, $r_7 = 1/5$, $r_8 = 2/5$, $r_9 = 3/5$, $r_{10} = 4/5$. Racionálne čísla p/q (v tvare zlomku s nesúdeliteľnými čitateľom a menovateľom) pre každý menovateľ q = 2,

3, 4, ... vypisujeme od najmenšieho po najväčšie, teda postupne od 1/q až po (q-1)/q. Je zrejmé, že každé racionálne číslo sa do tohoto zoznamu dostane.

Ďalej špeciálne očíslujeme jednotlivé intervaly reálnej osi: $\mathcal{I}_1 = \langle 0, 1 \rangle$, $\mathcal{I}_2 = \langle -1, 0 \rangle$, $\mathcal{I}_3 = \langle 1, 2 \rangle$, $\mathcal{I}_4 = \langle -2, -1 \rangle$, $\mathcal{I}_5 = \langle 2, 3 \rangle$, $\mathcal{I}_6 = \langle -3, -2 \rangle$, atď. Intervaly s nepárnymi indexami postupne zaplnia nezápornú poloos, intervaly s párnymi indexami zaplnia zápornú poloos. Celkove platí $\mathbb{R} = \bigcup_{n=1}^{\infty} \mathcal{I}_n$, pričom intervaly sú disjunktné. Každé racionálne číslo na určitom intervale \mathcal{I}_n má sebe odpovedajúce číslo z intervalu \mathcal{I}_1 , od ktorého sa líši o celé číslo – posun intervalu \mathcal{I}_n voči \mathcal{I}_1 . Preto sa aj racionálne čísla na každom intervale \mathcal{I}_n dajú očíslovať. Označme postupne racionálne čísla na intervale \mathcal{I}_n ako $r_{1,n}, r_{2,n}, r_{3,n}, \dots$ Prvý index teda určuje poradie čísla v rámci intervalu a druhý určuje poradie intervalu. Všetky racionálne čísla môžeme umiestniť do nasledujúcej **nekonečnej** tabuľky:

r _{1,1} ,	r _{2,1} ,	r _{3,1} ,	r _{4,1} ,	r _{5,1} ,	r _{6,1} ,	• • •
r _{1,2} ,	r _{2,2} ,	r _{3,2} ,	$r_{4,2},$	r _{5,2} ,	r _{6,2} ,	
$r_{1,3},$	r _{2,3} ,	r _{3,3} ,	r _{4,3} ,	r _{5,3} ,	r _{6,3} ,	
$r_{1,4},$	$r_{2,4},$	r _{3,4} ,	$r_{4,4},$	r _{5,4} ,	$r_{6,4},$	
$r_{1,5},$	r _{2,5} ,	r _{3,5} ,	$r_{4,5},$	r _{5,1} ,	r _{6,5} ,	
:	:	:	:	:	:	۰.
•	•	•	•	•	•	

A teraz všetky racionálne čísla prečíslujeme tak, aby každé z nich malo jediný index. Budeme postupovať od ľavého horného rohu tabuľky po diagonálach doprava, pozorne si všimnite systém číslovania: $r_1 = r_{1,1}$, $r_2 = r_{2,1}$, $r_3 = r_{1,2}$, $r_4 = r_{1,3}$, $r_5 = r_{2,2}$, $r_6 = r_{3,1}$, $r_7 = r_{4,1}$, $r_8 = r_{3,2}$, $r_9 = r_{2,3}$, atď. Ak si všimnete súčet indexov na pravej strane uvidíte, že tvorí tzv. neklesajúcu postupnosť. Keďže ľubovoľné racionálne číslo sa nachádza v určitom riadku a stĺpci tabuľky, časom sa k nemu pri tomto spôsobe určite dostaneme (po konečnom počte krokov). Teda sme ustanovili vzájomne jednoznačné zobrazenie $\mathbb{Q} \stackrel{\varphi}{\leftrightarrow} \mathbb{N}$.

Veta (o nespočítateľnosti množiny reálnych čísel). Množina reálnych čísel \mathbb{R} je nespočítateľná, t. j. neexistuje vzájomne jednoznačné zobrazenie $\mathbb{R} \stackrel{\varphi}{\leftrightarrow} \mathbb{N}$.

Dôkaz. Dokážeme, že nespočítateľný je interval (0,1). Z toho vyplýva aj nespočítateľnosť \mathbb{R} . Predpokladajme, že množina reálnych čísel z intervalu (0,1) je spočítateľná, teda jej prvky sa dajú očíslovať. Budeme ich brať v tvare s nekonečným počtom cifier za desatinnou čiarkou. Znovu ich umiestnime do tabuľky:

 $x_1 = 0, a_{11}a_{21}a_{31}a_{41}a_{51}a_{61}\dots$ $x_2 = 0, a_{12}a_{22}a_{32}a_{42}a_{52}a_{62}\dots$ $x_3 = 0, a_{13}a_{23}a_{33}a_{43}a_{53}a_{63}\dots$ $x_4 = 0, a_{14}a_{24}a_{34}a_{44}a_{54}a_{64}\dots$ $x_5 = 0, a_{15}a_{25}a_{35}a_{45}a_{55}a_{65}\dots$ \dots

Číslo a_{ij} je *i*-ta cifra za desatinnou čiarkou *j*-ho čísla. Zostrojíme (pri tomto usporiadaní) také reálne číslo, ktoré sa medzi uvedenými nemôže nachádzať. Všímame si diagonálne prvky a_{ii} . Ak je $a_{ii} \neq 5$, tak položíme $a_i = 5$, ak je $a_{ii} = 5$, tak položíme $a_i = 3$. Potom reálne číslo $a = 0, a_1a_2a_3a_4...$ patrí do intervalu (0, 1) lebo je menšie ako 1 a zároveň sa nemôže nachádzať v žiadnom riadku tabuľky, pretože na základe definície čísla *a* určite platí $a_{ii} \neq a_i$. Tento spor dokazuje vetu.

Po tomto teoretickom úvode do mohutnosti množín môžeme odpovedať na otázku: "Aká je mohutnosť Cantorovej množiny C?" Ak budeme uvažovať zápis čísel z intervalu $\langle 0, 1 \rangle$ v trojkovej sústave, môžeme zapísať

Domovská stránka
Titulná strana
Obsah
•• ••
•
Strana 166 z 348
Späť
Celá strana
Zatvoriť
Koniec

nasledujúci vzťah, definujúci Cantorovu množinu (BUKOVSKÝ, 1998):

$$C = \Big\{ x \in \langle 0, 1 \rangle : \ x = \sum_{i=1}^{\infty} x_i 3^{-i}, \ x_i \in \{0, 2\} \Big\}.$$

Teda v zápise čísel Cantorovej množiny v trojkovej sústave chýbajú cifry 1. V princípe to môžeme vysvetliť nasledujúcim spôsobom: odobratie stredného intervalu v prvom kroku je ekvivalentné so "zákazom jednotky" na prvom mieste za desatinnou (?) čiarkou, odobratie ďalších dvoch stredných intervalov v druhom kroku, je ekvivalentné so "zákazom jednotky" na druhom mieste, atď. ("Drobné problémy" môžu vzniknúť na krajoch, taktne ich obídeme mlčaním.)

Veta (o mohutnosti Cantorovej množiny C**).** Cantorova množina C má mohutnosť **kontinuum**, teda $|C| = |\mathbb{R}|$.

Dôkaz. Dokážeme rovnosť mohutností Cantorovej množiny a intervalu $\langle 0, 1 \rangle$. Na to treba ukázať vzájomne jednoznačné zobrazenie medzi týmito množinami. Uvažujeme teda nasledujúce zobrazenie. Každému prvku $x \in C$, ktorý má *v trojkovej sústave* zápis, pozostávajúci z cifier 0 alebo 2 priraďme číslo $y \in \langle 0, 1 \rangle$ tak, že v zápise čísla *x* vymeníme všetky cifry 2 za cifry 1 a výsledné číslo budeme uvažovať ako zápis *v dvojkovej sústave*. Inverzné zobrazenie spočíva v tom, že v dvojkovom zápise čísla *y* z intervalu $\langle 0, 1 \rangle$ nahradíme všetky cifry 1 ciframi 2 a výsledné číslo chápeme ako zápis čísla *x* v trojkovej sústave. Je zrejmé, že uvedené zobrazenie spĺňa spomínané požiadavky.

Teda sa ukázalo, že bodov Cantorovej množiny je "podstatne" viac, ako racionálnych čísel, resp. ako krajov vyhadzovaných intervalov (len nie je jasné, kde sa schovali!). Zároveň sme ukázali, že Cantorova množina má *mieru* 0 (keď že celková dĺžka vyhodených intervalov bola 1), pretože sa dá pokryť intervalmi, ktorých sumárna dľžka môže byť ľubovoľne malá.

Na záver citujme z knižky (CROWNOVER, 1995): "... Cantorova množina je *kompaktná, dokonalá* a *úplne nesúvislá"*. Doplňme vlastnými slovami: je *veľmi malá* (má mieru nula) ale obsahuje *obrovský počet prvkov* (má mohutnosť kontinuum).

Množiny, ktoré budú mať podobné vlastnosti, budeme nazývať **cantorovskými** alebo **cantorovským prachom** (či by bolo výstižnejšie nazývať ich **smetím**?).

6.2. Samopodobnosť, fraktálna a iné dimenzie

Podľa knihy (FEDER, 1988) navrhol MANDELBROT (1982) nasledujúcu *skúšobnú* definíciu fraktálu:

Definícia 52. Fraktálom sa nazýva množina, ktorej dimenzia *Hausdorfa-Bezikoviča* je väčšia ako *topologická* dimenzia.

Pochopenie tejto definície sa samozrejme opiera o zvládnutie pojmov *Hausdorfova-Bezikovičova* a *topologická* dimenzia. O ich vysvetlenie sa pokúsime nižšie. Praktickejšie je používať nasledujúcu menej presnú, z matematického hľadiska, zato však názornú definíciu, navrhnutú tiež Mandelbrotom:

Definícia 53. Fraktálom sa nazýva *štruktúra*, pozostávajúca z častí, ktoré sa v nejakom zmysle *podobajú* celku.

Táto druhá definícia zahŕňa množstvo objektov, ktoré nie sú len matematickými abstrakciami. Ak sa napríklad pozrieme na fotku oblakov, s charakteristickým rozmerom napr. 500 m a porovnáme ju s inou fotografiou oblaku, s charakteristickým rozmerom napr. 100 m, na prvý pohľad zaznamenáme podobnosť fotografií. Teda oblaky vyzerajú podobne, nezávisle od škály, v ktorej ich pozorujeme. Keby to tak nebolo, vedeli by sme napríklad povedať: "Tak toto je pri škále 100 m a toto zasa pri 500 m." Myslím si, že vo všeobecnosti to nie sme schopní rozoznať.

Poznámka 6.1. Treba tu upozorniť na jeden dôležitý moment. V praxi nemôžeme škálovať od nekonečne malých po nekonečne veľké rozmery. Napríklad ani netušíme, či má vesmír nekonečný alebo konečný *priemer*, takže uvažovať oblak v škále jedného parseku asi nebude najvhodnejšie. Na druhej strane sa už samozrejme pohľad na oblak pri škále 1 Å nebude podobať na tie, ktoré sme uviedli, snáď budeme "vidiet" už obrovské jednotlivé atómy. Teda **so škálovaním to v praxi netreba preháňať**.

Po tejto poznámke už môžeme medzi fraktály zaradiť napríklad stromy, pohoria s kopcami, na ktorých sú menšie kopčeky, či morské pobrežie.

Definícia 54. Množinu \mathcal{M} budeme nazývať **samopodobná** práve vtedy, ak existuje m > 1 rôznych zobrazení podobnosti T_1, T_2, \ldots, T_m takých, že platí

 $\mathcal{M} = T_1(\mathcal{M}) \cup T_2(\mathcal{M}) \cup \cdots \cup T_m(\mathcal{M}).$

Poznámka 6.2. O zobrazeniach podobnosti sme už písali v oddieli 4.2.2. V podstate ak by sme uvažovali kontraktívne zobrazenia podobnosti (môžu byť aj iné?), potom vidíme, že *samopodobné množiny sú pevné body Hutchinsonovho zobrazenia* alebo pevné body SIF.

Príklad 36. Cantorova množina je samopodobná. Odpovedajúce zobrazenia sme definovali na strane 161.

Poznámka 6.3. V zmysle práve uvedenej definície nebudú predfraktálne množiny C_n samopodobné, na druhej strane v zmysle druhej Mandelbrotovej definície ich už môžeme chápať ako fraktály, pretože tu isto je "nejaká podobnost" medzi ich časťami a nimi samotnými.

6.2.1. Fraktálna dimenzia

Rozdeľme nejakú úsečku na N rovnakých častí. Potom každú takúto časť úsečky môžeme chápať ako kópiu pôvodnej úsečky, zmenšenú 1/r krát (teda pri r = 1/3 hovoríme o 3-násobnom zmenšení). V akom vzťahu sú čísla N a r? V tomto prípade je jasné, že platí $N \cdot r = 1$. Ak budeme uvažovať úsečku \mathcal{U} ako podmnožinu \mathbb{R} , potom každá jej podúsečka \mathcal{U}_k sa dá napísať ako $\mathcal{U}_k = \mathbf{T}_k(\mathcal{U})$, kde každé zobrazenie \mathbf{T}_k má tvar $\mathbf{T}_k(x) = r \cdot x + p_k$, kde r je koeficient podobnosti a p_k je vhodný posun.

Pokúsme sa postup zopakovať na nejakom štvorci (alebo obdĺžniku). Zmenšime všetky jeho rozmery 1/r krát. Z takto zmenšených kópií poskladajme pôvodný obrazec. Budeme na to potrebovať N "zmenšenín".

V akom vzťahu budú teraz N a r? Znova nie je problém pochopiť, že bude platiť: $N \cdot r^2 = 1$.

Ak postup zopakujeme s nejakým trojrozmerným objektom, najlepšie s kockou, zistíme, že platí $N \cdot r^3 = 1$.

Takto sme prišli ku nasledujúcemu vzťahu, ktorý spája veľkosť zmenšenia, počet častí a *dimenziu* daného objektu

$$N r^D = 1. (69)$$

Presvedčili sme sa, že vzťah (69) platí pre úsečky (D = 1), obdĺžniky (D = 2) a kvádre (D = 3). Vo všetkých týchto príkladoch sme získali celočíselné hodnoty D. Môžeme si položiť otázku: "Existujú také geometrické objekty, ktorých dimenzia nie je celé číslo?" Hoci ešte nedávno by sme bez váhania odpovedali, že nie, odpoveď je **áno**. Také objekty — množiny existujú — nazývajú sa **samopodobné fraktály**. Hodnota D určená vzťahom (69) sa nazýva **fraktálna (zlomková) dimenzia** alebo **dimenzia** podobnosti.

Logaritmovaním vzťahu (69) pri ľubovoľnom základe dostávame

$$\dim_S = D = \frac{\log N}{\log 1/r}.$$
(70)

Poznámka 6.4. Pojem *fraktálnej dimenzie* sa objavil v roku 1919 v práci F. Hausdorfa. Vzorec (70) sa hodí na určovanie dimenzie v prípade, ak je koeficient podobnosti stále rovnaký, nedá sa použiť na určovanie dimenzie fraktálov, ktoré vznikajú, ak v zobrazení Hutchinsona SIF vystupujú

kontraktívne zobrazenia s rôznymi koeficientami kontraktívnosti. Trochu predbehneme vývoj udalostí a uvedieme definíciu, uvedenú v skriptách (BUKOVSKÝ, 1998), preformulovanú na naše označenia.

Definícia 55. Nech A je pevný bod SIF s koeficientami kontraktívnosti r_1, r_2, \ldots, r_m . Nech *s* je riešením rovnice

 $r_1^s+r_2^s+\cdots+r_m^s=1.$

Potom $s = \dim_{S}(A)$ sa nazýva **dimenzia podobnosti** množiny A.

Príklad 37. Určme fraktálnu dimenziu Kochovej krivky.

Riešenie. Na obrázku 24 je zobrazená *vločka*, ktorú v roku 1904 vymyslel H. von Koch. Je zložená z troch predfraktálov, ktorých definíciu uvedieme nižšie, rôzne natočených a posunutých.

Tretiny jednotlivých obrázkov 24 predstavujú prvé štyri iterácie SIF, definované nasledujúcim spôsobom. Vezmeme nasledujúci *začiatočný kompakt* SIF \mathcal{K}_0 :

 $\mathcal{K}_0 = \{ \mathbf{x} = (x_1, x_2)^T \in \mathbb{R}^2 : x_1 \in \langle 0, 1 \rangle, x_2 = 0 \}.$

Ďalej definujeme štyri kontraktívne zobrazenia podobnosti s koeficientom

r = 1/3.

$$T_{1}(x) = \begin{bmatrix} 1/3 & 0 \\ 0 & 1/3 \end{bmatrix} x + \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$T_{2}(x) = \begin{bmatrix} 1/6 & -\sqrt{3}/6 \\ \sqrt{3}/6 & 1/6 \end{bmatrix} x + \begin{bmatrix} 1/3 \\ 0 \end{bmatrix}$$

$$T_{3}(x) = \begin{bmatrix} 1/6 & \sqrt{3}/6 \\ -\sqrt{3}/6 & 1/6 \end{bmatrix} x + \begin{bmatrix} 1/2 \\ \sqrt{3}/6 \end{bmatrix}$$

$$T_{4}(x) = \begin{bmatrix} 1/3 & 0 \\ 0 & 1/3 \end{bmatrix} x + \begin{bmatrix} 2/3 \\ 0 \end{bmatrix}$$

Zobrazenie Hutchinsona (pozri oddiel 4.2.3) definujeme teraz ako

$$\mathbf{T}(E) = \mathbf{T}_1(E) \cup \mathbf{T}_2(E) \cup \mathbf{T}_3(E) \cup \mathbf{T}_4(E), \qquad E \in \mathcal{K},$$

kde \mathcal{K} je množina kompaktov na \mathbb{R}^2 .

Zobrazenie T spolu s iteračnou postupnosťou definovanou vzťahmi

 $\mathcal{K}_n = \mathbf{T}(\mathcal{K}_{n-1}), \qquad n = 1, 2, \dots$

vytvára *systém iterovaných funkcií* (SIF). Na základe vety o konvergencii postupností SIF (oddiel 4.2.3) môžeme teda tvrdiť, že existuje limita

$$\mathcal{H} = \lim_{n \to \infty} \mathbf{T}^{[n]}(\langle 0, 1 \rangle) = \lim_{n \to \infty} \mathcal{K}_n.$$

Množina \mathcal{H} sa nazýva Kochova krivka. Určme ešte jej *fraktálnu dimenziu*, dosadením do vzorca (70), pričom krivku \mathcal{H} môžeme poskladať z N = 4 jej kópií, zmenšených trojnásobne:

$$D = \frac{\log N}{\log 1/r} = \frac{\log 4}{\log 3} \approx 1.2618$$

Vidíme, že dimenzia Kochovej krivky síce menšia ako 2 (nepokrýva celú rovinu), ale zároveň je väčšia ako 1 (je nadmerne kľukatá).

Poznámka 6.5. Môžeme použiť aj vyššie uvedenú definíciu *dimenzie podobnosti*. Kochova krivka je pevný bod SIF, so štyrmi kontraktívnymi zobrazeniami T_k s rovnakým koeficientom kontraktívnosti r = 1/3. Teda *s* je riešenie rovnice

$$(1/3)^{s} + (1/3)^{s} + (1/3)^{s} + (1/3)^{s} = 1,$$

odkiaľ je 4 $(1/3)^s = 1$ a teda $s = \log 4 / \log 3$.

Poznámka 6.6. Vidíme, že len výsledný *fraktál* spĺňa matematickú definíciu samopodobnosti, t. j. skladá sa z celého počtu svojich vlastných "zmenšenín". V prípade *predfraktálov* môžeme povedať, že sa "takmer" dajú poskladať zo svojich zmenšenín. Práve v tom spočíva *istá samopodobnosť* predfraktálov, uvedená v druhej definícii Mandelbrota.

Úloha 35. Určte fraktálnu dimenziu Cantorovej množiny.

Obr. 25: Dvojrozmerná cantorovská množina

Úloha 36. Určte dimenziu fraktálu, ktorého prvé tri predfraktálne množiny sú znázornené na obrázku 25.

6.2.2. Topologická dimenzia

Na tomto mieste sme chceli uviesť definíciu topologickej dimenzie preto, aby sme mohli aspoň zľahka precítiť prvú definíciu fraktálu, danú Mandelbrotom. Avšak "zvíťazil zdravý rozum" a definíciu neuvádzame (čas, potrebný na jej "strávenie" radšej venujte ostatným problémom). Keby predsa len niekto nemohol bez tejto definície pokračovať v čítaní, nájde ju v knihách (BUKOVSKÝ, 1998; CROWNOVER, 1995), resp. v knihe (CROWNOVER, 1995) nájde pekný odkaz na tú správnu literatúru.

Topologická dimenzia sa definuje induktívnym spôsobom, preto sa na-

zýva tiež *induktívnou dimenziou*. Navyše existujú dve — *malá* a *veľká* — našťastie v priestore \mathbb{R}^n . Môže nadobúdať len **celočíselné hodnoty**.

Príklad 38. Uvedieme len pár príkladov *topologickej dimenzie* niektorých zaujímavých množín: $\dim_T(\emptyset) = -1$, $\dim_T(\mathbb{Q}) = 0$, $\dim_T(\mathcal{C}) = 0$, $\dim_T(\mathbb{R}) = 1$, $\dim_T(\mathbb{R}^2) = 2$, ..., $\dim_T(\mathbb{R}^n) = n$.

Ako vidíme, Cantorova množina C vyhovuje prvej Mandelbrotovej definícii fraktálu, pretože $0 = \dim_T(C) < \dim_S(C) \approx 0.6309$.

6.2.3. Minkovského, bunková (box) a Hausdorfova dimenzia

Predstavme si mapu nejakého kontinentu, ktorého dĺžka pobrežia nás zaujíma. Ako ju môžeme určiť? Ak máme poruke kružidlo, môžeme si na ňom nastaviť určitý priemer δ_0 , ktorý bude odpovedať podľa mierky mapy vzdialenosti l_0 . Ďalej do začiatku pobrežia zapichneme jeden hrot kružidla, druhý priložíme na inú pozíciu na pobreží, kružidlo pootočíme, pričom druhý hrot udržujeme pevne v bode, kde sme sa dotkli pobrežia a prvý hrot položíme na ďalší bod pobrežia. Túto činnosť opakujeme dovtedy, kým sa nedostaneme na koniec pobrežia. Ak sme priložili kružidlo N_0 krát, potom za približnú dĺžku môžeme vyhlásiť číslo

$$L_0 = N_0 \cdot l_0 = c \cdot N_0 \cdot \delta_0.$$

Samozrejme, môžeme tento výsledok "spresniť" tak, že zvolíme nový priemer δ_1 , odpovedajúci dĺžke l_1 a znova odmeriame dĺžku, rovnakým spô-

sobom. Počet priložení kružidla nech je teraz N_1 . Potom dostaneme dĺžku $L_1 = c \cdot N_1 \cdot \delta_1$.

Dalo by sa očakávať, že pri zmenšovaní dĺžky l_n sa bude celková dĺžka $L_n = L(\delta_n) = c \cdot N(\delta_n) \cdot \delta_n$ blížiť ku nejakej hodnote L. Ukazuje sa, že tieto očakávania sa nesplnia, dĺžka $L(\delta_n)$ neohraničene narastá pri zmenšovaní δ_n .

Poznámka 6.7. Narastanie dĺžky sa dalo očakávať (po bitke je každý generálom), pretože pri zmenšenom merítku δ_n musíme sledovať pobrežie podrobnejšie, zmenšovanie merítka pre nás znamená vlastne *zväčšovanie mapy* a teda "vidíme" detaily, ktoré sme predtým nepostrehli. Samozrejme, ako sme už spomenuli vyššie, so zmenšovaním merítka (a teda s limitným procesom) sa to nesmie preháňať. Čo je hranica pobrežia, keď sa nachádzame na atomárnej úrovni dĺžok?

Predpokladajme, že závislosť $L(\delta)$ môže byť popísaná závislosťou

 $L(\delta) \approx c \cdot N(\delta) \cdot \delta^D.$

Ak túto závislosť zlogaritmujeme, dostaneme

$$\log N(\delta) \approx k - D \log \delta, \tag{71}$$

kde $k \approx \log[L(\delta)/c]$. Vidíme, že závislosť (71) je lineárna v dvojnásobne logaritmických škálach. Zaujímavá je práve taká hodnota *D*, pre ktorú je *k* prakticky konštantné, a teda " δ -dĺžka" $L(\delta)$ nezávisí od mierky.

V knižke (FEDER, 1988) sú na stranách 16–17 uvedené dva obrázky, na ktorých sú nanesené body $[\log \delta, \log N(\delta)]$ pre rôzne pobrežia. Zaujímavé

je to, že prakticky pre každé pobrežie body ležia prakticky na priamke (teda závislosť tvaru $N(\delta) \approx a \cdot \delta^{-D}$ je veľmi dobre splnená), rôzne pobrežia majú rôzne *dimenzie* D. Pre nórske pobrežie vychádzalo $D \sim 1.52$, pre Veľkú Britániu bolo $D \sim 1.3$. Druhý obrázok je prevzatý z knihy (MANDELBROT, 1982). Mandelbrot uvádza aj údaje pre kružnicu, kde len pri veľkých δ dochádza ku zakriveniu. Pri menších hodnotách sú body na priamke, pre ktorú vychádza D = 1.

Úloha 37. Vezmite nejaký atlas, zvoľte si pobrežie a odmerajte ho pri rôznych mierkach δ . Naneste na graf body $[\log \delta, \log N(\delta)]$. Určte približne koeficient *D* z rovnice (71).

Zo vyťahu (71) môžeme vyjadriť D:

$$D \approx -\frac{\log N(\delta)}{\log \delta} + \frac{k}{\log \delta}$$

Ak budeme zmenšovať δ bude log δ klesať do $-\infty$ a druhý člen vymizne. To je základom definície Minkovského dimenzie.

Poznámka 6.8. V úvode sme hovorili o meraní dĺžky pobrežia pomocou kružidla. Ak však priložíme kružidlo, môžeme si zároveň predstaviť kruh, položený na mapu tak, že hroty kružidla tvoria jeho priemer. Jednotlivé priloženia kružidla potom odpovedajú **pokrytiu línie pobrežia** systémom kruhov. Namiesto kruhov by sme mohli použiť napríklad štvorce (čo sú vlastne kruhy v maximum metrike).

Definícia 56. Označme $N(\delta)$ najmenší počet kruhov (gulí) diametra δ , potrebných na pokrytie množiny *A*. Ak pre množinu *A* existuje limita

$$D = -\lim_{\delta \to 0^+} \frac{\log N(\delta)}{\log \delta},$$
(72)

potom sa táto limita nazýva **Minkovského dimenzia** množiny *A* a budeme ju označovať dim_{*M*}(*A*) = *D*.

Poznámka 6.9. V skriptách (BUKOVSKÝ, 1998) sa daná limita označuje ako **Kolmogorova entropia**.

Teda **postup pri približnom určovaní Minkovského dimenzie** je nasledujúci:

1. Zvolíme rozmer δ kruhu (štvorca, prípadne gule alebo kocky v 3D).

2. Pokryjeme množinu *A* čo najmenším $N(\delta)$ počtom kruhov.

3. Určíme podiel – $\log N(\delta) / \log \delta$, ktorý dáva približnú hodnotu Minkovského dimenzie dim_M(A).

4. Postup opakujeme pre viac hodnôt δ a sledujeme vývoj približnej hodnoty dimenzie, pri zmenšujúcich sa hodnotách δ .

Alternatívny **postup pri približnom určovaní Minkovského dimenzie** je nasledujúci:

1. Zvolíme rozmer δ kruhu (štvorca, prípadne gule alebo kocky v 3D).

2. Pokryjeme množinu *A* čo najmenším počtom kruhov $N(\delta)$.

3. Postup opakujeme pre viac hodnôt δ .

4. Na základe "nameraných hodnôt" pre je počet "meraní" P v závislosti log $N(\delta_i) \approx k - D \log \delta_i$, kde i = 1, 2, ..., P, určíme metódou najmenších štvorcov "optimálnu" hodnotu parametra D.

Ďalšia modifikácia spočíva v tom, že rozdelíme nejakú oblasť, obsahujúcu množinu *A* (napríklad obdĺžnik v dvoj- alebo kváder v trojrozmernom priestore) na štvorce (kocky) rôznych rozmerov δ_i . Potom spočítame počet buniek, obsahujúcich body množiny *A*, teda počet buniek, potrebných na pokrytie množiny *A*. Ak použijeme tento počet $\hat{N}(\delta)$ v definícii Minkovského dimenzie, dostaneme tzv. *bunkovú* alebo *box dimenziu*. Keďže v definícii Minkovského dimenzie sa vyžaduje najmenší počet pokrytí, výsledky, získané touto jednoduchšou metódou sa budú (z praktického hľadiska nepodstatne) líšiť od výsledkov, získaných vyššie uvedenými metódami.

Príklad 39. Určme Minkovského dimenziu množiny $A = \{0, 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots\}.$

Riešenie. Príklad je vo forme vety uvedený v knihe (CROWNOVER, 1995). Stručne popíšeme postup. Ak zvolíme nejaké $\delta > 0$, označme *k* najmenšie prirodzené číslo, pre ktoré je

$$\frac{1}{k-1}-\frac{1}{k}=\frac{1}{k(k-1)}<\delta$$

Platí zhruba $\delta \approx 1/k^2$. Na pokrytie bodov 1, $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{4}$, ..., $\frac{1}{k-1}$, je potrebných $k-1 \approx 1/\sqrt{\delta}$ kruhov priemeru δ . Na pokrytie zvyšných bodov, ktoré

ležia na intervale $\langle 0, \frac{1}{k} \rangle$ je potrebných približne $1/(k\delta) \approx 1/(\sqrt{\delta})$ kruhov. Celkový počet, potrebný na pokrytie celej množiny *A* je teda približne

$$N(\delta) = \frac{1}{\sqrt{\delta}} + \frac{1}{\sqrt{\delta}} = \frac{2}{\sqrt{\delta}}$$

Teraz môžeme spočítať limitu (72)

$$D = -\lim_{\delta \to 0^+} \frac{\log N(\delta)}{\log \delta} = -\lim_{\delta \to 0^+} \frac{\log \frac{2}{\sqrt{\delta}}}{\log \delta} = \frac{1}{2}.$$

Teda dim_M(A) = 1/2.

Poznámka 6.10. Množina *A* je zrejme spočítateľná a preto má nulovú mieru (dá sa pokryť uzavretými intervalmi, s celkovou dĺžkou ľubovoľne malou). Napriek tomu je jej Minkovského dimenzia nenulová, čo je dané priestorovým rozložením bodov a nie ich počtom!

Poznámka 6.11. V knihe (CROWNOVER, 1995) dokázaná veta o tom, že ak je množina *A* hladká krivka, potom je dim_{*M*}(*A*) = 1.

Stručne sa venujme **Hausdorfovej dimenzii** množín. Základom jej definície je takzvaná *Hausdorfova d-miera* množiny. Uvažujme pokrytie množiny *A* rôznymi "guľami". (Ak pracujeme v rovine, nič nám nebráni chápať ju ako podmnožinu trojrozmerného priestoru a potom pokrytie kruhmi a guľami vlastne znamená to isté, dôležitý je priemer množín.)

Pozrime si vzorce "objemov gulí" s priemerom δ pre D = 1, 2 a 3.

$$V_1(\delta) = \delta, \qquad V_2(\delta) = \frac{\pi}{4} \,\delta^2, \qquad V_3(\delta) = \frac{\pi}{6} \,\delta^3,$$

kde V_1 je dĺžka, V_2 obsah a V_3 skutočne objem. Označme tieto objemy

$$V_D(\delta) = \gamma(D) \, \delta^D.$$

Pomocou Γ(x) — takzvanej Gamma funkcie — je možné definovať $\gamma(D)$ tak, že ostanú v platnosti vzorce s celočíselným D, ale zároveň sa budú dať použiť aj pre neceločíselné D (CROWNOVER, 1995).

Pokryme teda množinu *A* spočítateľným počtom "gulí" s priemermi $\delta_k < \varepsilon$. Pre každé pokrytie existuje súčet *D*-objemov pokrývajúcich "gulí"

$$\gamma(D) \sum_{k=1}^{\infty} \delta_k^D.$$

Samozrejme tento súčet závisí od hodnoty D, ε a od pokrytia. Ak označíme

$$S_{D,\varepsilon}(A) = \inf \gamma(D) \sum_{k=1}^{\infty} \delta_k^D$$

kde infimum sa berie po všetkých možných pokrytiach množiny *A*, tak *Hausdorfova vonkajšia D-rozmerná miera množiny A* sa definuje ako

$$S_D(A) = \lim_{\varepsilon \to 0^+} S_{D,\varepsilon}(A)$$

Poznámka 6.12. Rozdiel medzi Minkovského a Hausdorfovou mierou spočíva v tom, že v prípade Minkovského miery sa pokrýva guľami, ktorých priemer je rovnaký $\delta_k = \varepsilon$, v prípade Hausdorfovej miery je $\delta_k < \varepsilon$.

Teda Hausdorfove pokrytie dokáže lepšie "kopírovat" danú množinu (pri danom ε !). V konečnom dôsledku sa však sleduje správanie horných mier pri $\varepsilon \to 0$.

Príklad 40. Určme Hausdorfovu *D*-mieru, kde *D* > 0, množiny $A = \{0, 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots\}.$

Riešenie. Ukážeme, že dokážeme súčet *D*-objemov nejakého pokrytia danej množiny urobiť menší ako ľubovoľné číslo a teda, že Hausdorfova *D*miera tejto množiny je 0. Nasledujúca konštrukcia je štandardná a dokazuje nulovosť Hausdorfovej *D*-miery pre ľubovoľnú spočítateľnú množinu. Prvý prvok množiny *A* pokryjeme guľou s priemerom $d_1 = (\xi)^{1/D}$, druhý pokryjeme guľou s priemerom $d_2 = (\xi/4)^{1/D}$, ..., *k*-ty pokryjeme guľou s priemerom $d_k = (\xi/k^2)^{1/D}$, Potom pre dané pokrytie platí

$$\gamma(D) \sum_{k=1}^{\infty} \delta_k^D = \gamma(D) \sum_{k=1}^{\infty} \left[\left(\frac{\xi}{k^2}\right)^{1/D} \right]^D = \gamma(D) \sum_{k=1}^{\infty} \frac{\xi}{k^2} = \gamma(D) \xi \frac{\pi^2}{6}.$$

Je zrejmé, že pre každé $\gamma(D)$ môžeme zvoliť ξ tak malé, že celkový súčet objemov pokrytia bude ľubovoľne malý. Preto bude $S_D(A) = 0$ pre každé D > 0.

Veta (o Hausdorfovej dimenzii). Pre každú množinu $A \in \mathbb{R}^n$ existuje jediné číslo *D*, pre ktoré platí

 $e < D \Rightarrow S_e(A) = \infty \qquad \land \qquad e > D \Rightarrow S_e(A) = 0.$

Toto číslo *D* sa nazýva **Hausdorfova dimenzia** množiny *A*, pričom platí

 $\dim_{H}(A) = \sup\{D: S_{D}(A) = \infty\} = \inf\{D: S_{D}(A) = 0\}.$

Dôkaz. Radšej nie.

Poznámka 6.13. Predchádzajúci príklad 40 ukazuje, že existujú množiny, ktorých Minkovského a Hausdorfova dimenzie sú rôzne. Ostaneme teda radšej pri používaní Minkovského, resp. bunkovej dimenzie.

Príklad 41. Ak budeme uvažovať štvorec, potom ho môžeme pokryť veľmi veľkým počtom drobných guľôčok. Keďže ich priemery sa musia zmenšovať k nule, ich počet sa bude blížiť do nekonečna. Nech sú uložené na sieťke $N \times N$. Potom ich počet bude rádovo N^2 , dĺžky budú rádovo 1/N, obsahy budú rádovo $1/N^2$ a objemy budú rádovo $1/N^3$. 1-miera bude nekonečná, pretože $N^2 \cdot 1/N = N$, 2-miera bude konečná, pretože $N^2 \cdot 1/N^2 = 1$ a 3-miera bude nulová, pretože bude platiť $N^2 \cdot 1/N^3 = 1/N = 0$.

Poznámka 6.14. Prof. Krempaský na jednej prednáške výstižne poznamenal, že ľudia asi intuitívne vnímajú fraktálnu dimenziu. Odpovedajú

tomu, napríklad, stavby, ktorých fraktálna dimenzia kopíruje dimenziu okolitého prostredia — rovné pyramídy v rovnej púšti a bohato členené pagody uprostred ázijských džunglí.

6.3. Konštruovanie fraktálov

Vyššie sme už uviedli niekoľko spôsobov konštruovania fraktálov.

Cantorovu množinu sme konštruovali *postupným odoberaním* jej častí, ukázali sme však, že rovnaký výsledok dosiahneme pomocou **systému iterovaných funkcií**. Ukážme si podobný postup na príklade *Sierpińskeho koberca*.

Príklad 42. V rovine uvažujme zaplnený rovnostranný trojuholník S_0 . V prvom kroku z neho odoberme vnútorný trojuholník, ktorého strany tvoria stredné priečky trojuholníka. Vznikne tak známe logo firmy Fischer — S_1 . V druhom kroku odoberme vo všetkých troch trojuholníkoch znova stredné trojuholníky. Tak pokračujme ďalej. Vzniknutá postupnosť predfraktálov definuje fraktál, ktorý sa nazýva *Sierpińskeho koberec*. Znázornime predfraktál S_3 .

Riešenie. Prvé predfraktály sú znázornené na obrázku 26.

Úloha 38. Určte fraktálnu dimenziu Sierpińskeho koberca.

Obr. 26: Prvé predfraktály Sierpińskeho koberca

Úloha 39. Určte zobrazenia definujúce SIF v prípade *Sierpińskeho koberca*. Uskutočnite 3 iterácie, ak za začiatočný kompakt zvolíme obvod rovnostranného trojuholníka. Porovnajte obrázky po 3 iteráciách, ktoré sme získali z dvoch rôznych začiatočných množín. Vyskúšajte inú začiatočnú množinu, napríklad obvod štvorca.

6.3.1. Lindenmayerove systémy

Pojem Lindenmayerovho systému alebo skrátene *L*-systému sa objavil len nedávno v roku 1968 vďaka A. Lindenmayerovi. *L*-systémy boli zavedené pri výskume *formálnych jazykov*, využívali sa aj v biologických modeloch selekcie. Názornú grafickú interpretáciu *L*-systémov zaviedli HOGEWEG a HESPER (1974). Pomocou *L*-systémov je možné konštruovať známe samopodobné fraktály, vrátane Kochovej vločky alebo Sierpińskeho koberca. Pomocou *L*-systémov sa však dá konštruovať obrovské množstvo ďalších fraktálov, napríklad *fraktálne stromy* a *rastliny* (CSONTÓ a PALKO, 2002). To, že

L-systémy sú vhodným nástrojom na generovanie realisticky vyzerajúcich obrazov rastlín, ukázal matematik SMITH (1984).

Ohraničíme sa, rovnako ako autor knihy (CROWNOVER, 1995), odkiaľ čerpáme tieto informácie, len prípadom *deterministických L*-systémov.

Definícia 57. Formálne *L*-systém pozostáva z *abecedy*, začiatočného slova, nazývaného *axiómou* alebo *iniciátorom* a zo súboru *generujúcich pravidiel*, určujúcich spôsob transformácie slova od iterácie k iterácii. Postupnosť slov potom definuje postupnosť *predfraktálov*, aproximácií výsledného fraktálu.

Na grafickú realizáciu *L*-systémov sa hodí tzv. *turtle*-grafika, v preklade *korytnačia*-grafika. Modeluje pohyb korytnačky, ktorá nemá poňatia o tom kde je a rozhoduje sa vždy len medzi pár možnosťami trávenia "najbližšej budúcnosti". Buď sa pootočí (o rovnaký uhol vľavo alebo vpravo), buď prejde vždy rovnaký krok dopredu (korytnačka predsa nevie cúvať) alebo prejde krok dopredu a "označkuje" (ako asi?) cestu.

V každom momente *stav* korytnačky definuje trojicu čísel (x, y, α) , kde (x, y) je poloha korytnačky v rovine a α je aktuálny uhol natočenia korytnačky voči nejakému súradnicovému systému.

Po "prečítaní kódového slova" korytnačka "vyznačí" slovo – predfraktál – v rovine.

Abeceda L-systému teda môže obsahovať napríklad nasledujúce znaky:

- F jeden krok dopredu s kreslením stopy
- f jeden krok dopredu bez kreslenia stopy

Domovská stránka
Titulná strana
Obsah
• •
Strana 188 z 348
Späť
Celá strana
Zatvoriť
Koniec

- [otvorenie vetvy
-] uzavretie vetvy
- + zväčšenie uhla α o hodnotu θ (proti smeru pohybu hod. ručičiek)
- zmenšenie uhla α o hodnotu θ

Poznámka 6.15. Uvedené znaky reprezentujú príkazy *turtle*-grafiky. Na praktické účely je možné a užitočné zaviesť ešte ďalšie pomocné znaky, budeme ich označovať X a Y. Pri ich výskyte ich môže korytnačka buď ignorovať alebo interpretovať ako krok dopredu F (v programe, uvedenom v prílohe, sme to implementovali tak, že je nastavené ignorovanie, odkomentovaním odpovedajúcich riadkov môžeme nastaviť druhú interpretáciu).

Poznámka 6.16. V MATLABe sme použili namiesto uvedených symbolov abecedu: L, S, O, C, P a M.

Poznámka 6.17. V knižke (CSONTÓ a PALKO, 2002) na strane 49 nájdete informácie o 3D zovšeobecnení korytnačej grafiky.

Pravidlá sa môžu nazývať tak, aby bolo jasné, načo sa používajú, napríklad *new* L a pod.

```
Príklad 43. L-systém, odpovedajúci Kochovej vločke sa definuje nasledujúcim spôsobom:
1. θ = π/3.
2. Axióma: F++F++F.
3. Pravidlo: new F = F-F++F-F.
```

Domovská stránka
Titulná strana
Obsah
•• ••
•
Strana 189 z 348
Späť
Celá strana
Zatvoriť
Koniec

Overte, že ak vykreslí korytnačka axiómu, na obrazovke sa objaví rovnostranný trojuholník.

V prvom kroku sa podľa pravidla každý znak F nahradí reťazcom F-F++F-F. Dostaneme teda slovo

F-F++F-F++F-F++F-F++F-F++F-F.

V ďalších krokoch sa substitúcie podľa pravidla opakujú, vždy sa použijú v každom výskyte substituovaného znaku, v tomto prípade znaku F.

Poznámka 6.18. Pri ručnom výpise substitúcií je vhodné použiť prechodne zátvorky (a) na vyznačenie substituovaných znakov, napríklad vyššie uvedené slovo po prvej iterácii by vyzeralo nasledujúcim spôsobom

(F-F++F-F)++(F-F++F-F)++(F-F++F-F).

Na prvý prvý pohľad je zrejmé, že boli substituované tri znaky.

Na záver treba ešte povedať, že pri otvorení novej vetvy príkazom [si korytnačka zapamätá svoj stav a vráti sa do neho po uzavretí vetvy odpovedajúcim príkazom]. Pri vnorených vetvách musí korytnačka preukázať skutočne dobrú pamäť a nepopliesť to.

Príklad 44. Na obrázku 27 sú znázornené tri iterácie predfraktálu "reťaz", definovaného nasledujúcim spôsobom:
1. θ = π/2.
2. Axióma: F+F+F+F.
3. Pravidlo 1: *new* F = F+f-F-FFF+F+f-F.
4. Pravidlo 2: *new* f = fff.

Ďaľšie obrázky nájdete v knihe (CROWNOVER, 1995), definície ďalších *L*-systémov vyčítate z programovej prílohy.

6.3.2. Randomizované systémy iterovaných funkcií

V programovej prílohe nájdete údaje potrebné na vytvorenie zobrazení fraktálov náhodným algoritmom SIF, kde sa v každom kroku náhodne volí jedno z kontraktívnych zobrazení. Zmenou pravdepodobností je možné dosiahnuť rôzne obrázky.

V časti *Koláže* knihy (CROWNOVER, 1995) nájdete návod na riešenie *opačnej úlohy SIF*, kedy máme obrázok a radi by sme sa ku nemu dopracovali vhodnou voľbou SIF. Podstata metódy spočíva v tom, že obrázok "obkľúčime" štvorcom alebo iným útvarom a potom sa snažíme zadať transformácie tohoto štvorca na rozhodujúce tvary, ktoré sa vyskytujú v želanom obrázku.

O tom, že tieto metódy neslúžia len na zábavu, svedčia aj práce našich kolegov (ČANDÍK, 2000; LEVICKÝ a FORIŠ, 2002, 2003) z Technickej univerzity. ČANDÍK (2000) uvádza, že matematickým východiskom na fraktálové zakódovanie obrazu je *Kolážová teoréma*, ktorej autor BARNSLEY (1988) spolu s A. SLOANOM uverejnili tento netradičný spôsob kódovania.

6.3.3. Náhodné fraktály

Fraktálne objekty sa vyskytujú prakticky na každom kroku. Doteraz uvedené postupy konštrukcie pomocou SIF alebo *L*-systémov majú tú nevý-

Zatvoriť

Koniec

Obr. 28: Výsledok použitia náhodného algoritmu SIF

hodu, že sú *deterministické*. V prírode vyskytujúce sa objekty, ako napríklad listy, sa síce navzájom podobajú, ale nie sú totožné.

V knihe (CROWNOVER, 1995) je problematike náhodných fraktálov venovaná celá kapitola. Na tomto mieste len uveďme, že môžeme rôznym spôsobom zabudovávať náhodu do deterministických procesov: napríklad pri Kochovej vločke (pozri stranu 173), ktorá sa za normálnych okolností deformuje len smerom von, môžeme pripustiť aj opačnú deformáciu. Napríklad v *L*-systéme by sme to mohli dosiahnuť náhodnou voľbou určitého pravidla z množiny alternatívnych pravidiel.

Ale to už je iná rozprávka . . .

6.4. Oblasti príťažlivosti iteračných procesov v komplexnej rovine

V roku 1879 A. Cayley sformuloval nasledujúcu úlohu. Navrhol metódu, ktorú on nazýval metóda Newtona-Fouriera (dnes sa používa už len názov Newtonova metóda)

$$\begin{cases} x_{k+1} = x_k - p(x_k) / p'(x_k), \\ k = 0, 1, \dots, \end{cases}$$
(73)

použiť na riešenie rovníc p(x) = 0 s komplexným polynómom p (citujeme podľa knihy (PEITGEN a RICHTER, 1986)): "... Úloha spočíva v rozdelení roviny na oblasti tak, aby, ak si podľa želania zvolíme ľubovoľný bod P (začiatočný bod x_0 v (73)) hocikde vo vnútri jednej oblasti, prišli by sme

koniec-koncov k bodu *A* (koreňu, t. j. p(A) = 0); z hociktorého bodu druhej oblasti by sme prišli k bodu *B* a tak ďalej pre každý z bodov — koreňov našej rovnice p(x) = 0.

V prípade kvadratickej rovnice je riešenie jednoduché a krásne, no už nasledujúci prípad kubickej rovnice, podľa všetkého, predstavuje značné ťažkosti."

Oblasti, spomínané v citáte sa nazývajú *oblasti* (bazény) *príťažlivosti* jednotlivých koreňov. Zmena numerickej metódy samozrejme môže ovplyvniť tvar týchto oblastí.

O tom, že sa Cayley v svojom odhade nemýlil, nás presviedča obrázok 29. Vidíme, že jednotlivé oblasti určite nie je možné jednoducho definovať, hranica týchto oblastí — separatrixa — má fraktálny charakter, jednotlivé "uzlíkové" motívy sa pri zväčšovaní výrezov obrázku opakujú, ako to vidieť na spodnom obrázku.

Na obrázku 30 je znázornené chaotické správanie postupnosti bodov iteračného procesu v prípade, ak sa tento spustí na separatrixe. Na jednej osi sú naznačené iterácie, na druhej osi hodnoty $\log |z_n|$, pretože pri normálnom merítku by malé absolútne hodnoty $|z_n|$ na obrázku zanikli.

6.5. Juliove a Mandelbrotove množiny

V knihe (PEITGEN a RICHTER, 1986) sú uvedené niektoré klasické fundamentálne výsledky z prác G. JULIA (1893–1978) a P. FATOU (1878–1929), týkajúce sa racionálnych zobrazení. Mandelbrot, tamtiež, uvádza: "... Vďaka tomu,

Koniec

Obr. 29: Oblasti príťažlivosti koreňov rovnice $z^3+1=0$

Koniec

že Julia bol jedným z mojich učiteľov ... ".

Veľmi dobrý prehľad o Mandelbrotovej a Juliovych množinách aj s krásnymi ilustráciami nájdete na internetovej adrese

http://alife.tuke.sk/projekty/mandelbrot/mj.html.

Ak by sme chceli o týchto množinách napísať podrobnejšie, nemohli by sme asi urobiť nič lepšie, len "odpísať" všetko to, čo je tam uvedené. Preto v tejto časti poskytneme len stručný výťah najdôležitejších poznatkov o Juliovych a Mandelbrotovych množinách podľa knihy (CROWNOVER, 1995).

Uvažujme polynóm

$$f(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_2 z^2 + a_1 z + a_0, \qquad a_n \neq 0, \quad a_k \in \mathbb{C},$$

 $k = 0, 1, \ldots, n$, stupňa $n \ge 2$ s komplexnými koeficientami.

Definícia 58. Juliova množina funkcie f sa označuje J(f) a je definovavaná nasledujúcim spôsobom

 $J(f) = \partial \{ z : f^{[n]}(z) \to \infty \text{ pri } n \to \infty \}.$

Teda *Juliova množina* je hranica množiny bodov, ktoré pri iterovaní zobrazením f divergujú do nekonečna.

Príklad 45. Uvažujme $f(z) = z^2$. Keďže $f^{[n]}(z) = z^{(2^n)}$, tak potom $f^{[n]}(z) \to \infty$ pri $n \to \infty$ práve vtedy, keď |z| > 1. Hranicou tejto množiny, teda *Juliovou množinou* zobrazenia z^2 je jednotková kružnica $\{z : |z| = 1\}$, ktorá nie je fraktál. Napriek tomu je funkcia $f(z) = z^2$ chaotická na svojej Juliovej množine — kružnici.

Juliove množiny sa stali známymi najmä v súvislosti s kvadratickými zobrazeniami typu

$$f_c(z) = z^2 + c$$

kde $c \in \mathbb{C}$ je konštanta.

Na tento tvar môžeme substitúciou upraviť ľubovoľný kvadratický polynóm. Písomne sa ani nedá vyjadriť, aké bohatstvo foriem poskytujú Juliove množiny J_c týchto jednoduchých zobrazení. Mnoho ich zobrazení nájdete v knižke (PEITGEN a RICHTER, 1986), akosi nie je možné pochopiť, že za všetkými týmito nádhernými stvoreniami stojí taký jednoduchý vzorec.

Nasledujúca veta urýchľuje test divergencie pri počítačovom znázorňovaní Juliovych množín.

Veta (o divergencii kvadratického zobrazenia). Predpokladajme, že |c| < 2. Nech $z \in \mathbb{C}$ a nech $z_n = f^{[n]}(z)$ pre n = 1, 2, 3, ... Ak existuje také n_0 , že $|z_{n_0}| \ge 2$, potom platí

$$\lim_{n\to\infty}z_n=\infty$$

teda *orbita* $\{f^{[n]}(z)\}_{n=1}^{\infty}$ konverguje do nekonečna a *z* nepatrí do Juliovej množiny $J(f_c)$.

Dôkaz. Je uvedený v knihe (CROWNOVER, 1995).

Domovská stránka
Titulná strana
Obsah
()
• •
Strana 199 z 348
Späť
Celá strana
Zatvoriť
Koniec

Ešte výstižnejšie to vyjadril v knižke (PEITGEN a RICHTER, 1986) A. DOU-ADY, keď napísal: ". . . Ak pre nejaké *n* bude absolútna hodnota $|z_n|$ väčšia ako |c| + 2, potom bude $|z_{n+12}|$ väčšia, ako je pomer objemu nám známeho Vesmíru (podľa vzdialenosti k najvzdialenejším quazarom) k objemu protónu."

Body, ktorých trajektórie nekonvergujú do nekonečna je možné zaradiť do tzv. *zaplnených Juliovych množín* K_c polynómu f_c .

Obrázok 31 znázorňuje zaplnenú Juliovu množinu $K_{-0.194+0.6557i}$. Kto však chce vidieť skutočne krásne obrázky Juliovych množín, nech nazrie do knižky (PEITGEN a RICHTER, 1986).

Juliove množiny J_c môžu byť v závislosti od hodnoty parametra c buď súvislé alebo úplne nesúvislé. Táto vlastnosť tvorí základ definície Mandelbrotovej množiny.

Definícia 59. Mandelbrotovu množinu polynómov $f_c(z) = z^2 + c$ budeme označovať \mathcal{M} a definujeme ju nasledujúcim spôsobom:

 $\mathcal{M} = \{ c \in \mathbb{C} : J_c \text{ je súvislá} \}.$

Veta (o Mandelbrotovej množine).

$$\mathcal{M} = \Big\{ c \in \mathbb{C} : \{ f_c^{[n]}(0) \}_{n=1}^{\infty} \text{ je ohraničená} \Big\}.$$

alebo

$$\mathcal{M} = \{ c \in \mathbb{C} : f_c^{[n]}(0) \not\to \infty \text{ pri } n \to \infty \}.$$

Obr. 31: Zaplnená Juliova množina $K_{-0.194+0.6557\,\mathrm{i}}$

Koniec

Zatvoriť

Domovská stránka

Mandelbrotova množina má tiež fraktálny charakter, základný tvar kardioidy sa znova a znova objavuje na rôznach miestach.

Na obrázku 32 je znázornená zaplnená Mandelbrotova množina \mathcal{M} . Rôzne zväčšené výrezy vo farbách, odpovedajúcich rýchlosti divergencie, znova nájdete v knihe (PEITGEN a RICHTER, 1986). Na stránke http:// alife.tuke.sk/projekty/mandelbrot/applet/applet.htm si môžete vyskúšať tvorbu študentov FEI TU.

Meraj všetko, čo sa dá merať a urob merateľným všetko, čo sa merať nedá.

Galileo.

7. Charakteristiky chaosu

V tejto kapitole chceme spomenúť niektoré metódy, súvisiace s praktickou analýzou "chaotického správania". Mnohé veci, voľne parafrázujúc citát Mandelbrota, treba ešte najprv precítiť. Pri výskume správania dynamických systémov je zrejme najlepšie použiť čo najviac z nižšie uvedených metód, prípadne samostatne navrhnúť ich modifikácie.

7.1. Poincarého zobrazenie

Jedným z nástrojov, pomocou ktorých sa môžeme aspoň čiastočne zorientovať pri skúmaní trajektórií zložitých procesov (aj viacrozmerných), je Poincarého zobrazenie. Ak budeme uvažovať dynamický systém so stavovým vektorom $\mathbf{x}(t)$, môžeme si všímať stav systému v určitých časových momentoch, napr. v momentoch T, 2T, 3T, ..., kde T môže byť napríklad perióda oscilátora a podobne. Ak stav pre t = 0 označíme \mathbf{x}_0 , stav v čase t = T označíme $\mathbf{x}(T) = \mathbf{x}_1$, atď., získame postupnosť stavov. Potom

Poincarého zobrazenie \mathcal{P} je zobrazenie, pre ktoré platí:

$$\begin{array}{rcl} \boldsymbol{x}_1 &=& \mathcal{P}(\boldsymbol{x}_0), \\ \boldsymbol{x}_2 &=& \mathcal{P}(\boldsymbol{x}_1), \\ &\vdots \\ \boldsymbol{x}_{n+1} &=& \mathcal{P}(\boldsymbol{x}_n), \\ &\vdots \end{array}$$
(74)

Ak by bol dynamický systém jednorozmerný a periodický s periódou T, potom by zrejme pre všetky $n \in \mathbb{N}$ platilo $x_n = x_{n-1}$ (prečo?) a grafom Poincarého zobrazenia by bol jediný bod. V prípade periodického pohybu s periódou 2T by zasa platilo $x_{n+1} = x_{n-1}$, teda grafom by bola len dvojica bodov (x_0, x_1) a $(x_1, x_2) = (x_1, x_0)$. V prípade kvaziperiodického pohybu, keď sa situácia "takmer pravidelne takmer opakuje", budú body (x_{n-1}, x_n) ležať v blízkosti určitej krivky. V prípade chaotického pohybu, zaplnia tieto body určitú oblasť.

Používajú sa aj Poincarého zobrazenia iného typu (avšak založené na podobnom princípe). Ak budeme uvažovať dvojrozmerný systém so stavmi x = (x, y), môžeme napríklad v časových okamihoch, keď premenná x prechádza určitou hodnotou (napríklad nulovou) alebo nadobúda extremálnu hodnotu, pozorovať premennú y. Postupnosť (y_n) bude potom definovať Poincarého zobrazenie podobne, ako je to definované v (74).

V prípade Lorenzovho systému, ktorý je trojrozmerný, môžeme sledovať trajektóriu v trojrozmernon fázovom priestore a zaznamenávať časové

okamihy, v ktorých trajektória prechádza z jednej strany určitej roviny na druhú stranu. V týchto okamihoch potom môžeme pozorovať postupnosti hodnôt jednotlivých stavových premenných. Napríklad pri zobrazovaní bodov (x_n , y_n) v jednej rovine by body v prípade chaotického pohybu boli rozložené v nejakej dvojrozmernej oblasti.

7.1.1. Chaos v konzervatívnych systémoch

Konzervatívne systémy sú energeticky uzavreté. Medzi také systémy môžeme zaradiť napríklad slnečnú sústavu. Zdalo by sa, že pohyb planét je možné dlhodobo predvídať, veď napríklad odchýlky od vypočítanej predpokladanej trajektórie Uránu viedli k odhaleniu planéty Neptún v roku 1846.

Henri Poincaré sa koncom 19. storočia pokúsil vyriešiť problém správania troch telies pri gravitačnom pôsobení. Ukázalo sa, že úloha sa nedá formálne vyriešiť. Poincaré teda vykonal numerické výpočty (ručne!!!), využil tiež spomenuté zobrazenie. Pritom zistil, že správanie systému troch telies veľmi silne závisí na zvolených začiatočných podmienkach.

Nižšie uvedieme príklad prevzatý z knihy (HEINRICHS, 1993). Uvažujme pružinu s tuhosťou k a dĺžkou v nenapätom stave l_0 , na ktorej je zavesené závažie s hmotnosťou m. Pružina môže kmitať aj ako kyvadlo v rovine (x, y) (pozri obrázok 33). Tento systém je konzervatívny (hamiltonovský)

a dá sa popísať sústavou dvoch diferenciálnych rovníc

$$\ddot{x} = -\frac{kx(\sqrt{x^2 + y^2} - l_0)}{m\sqrt{x^2 + y^2}},$$

$$\ddot{y} = -\frac{ky(\sqrt{x^2 + y^2} - l_0)}{m\sqrt{x^2 + y^2}} - g.$$

Budeme skúmať správanie sa tohoto dynamického systému pri rôznych začiatočných podmienkach (s rovnakou celkovou energiou *E*!). V čase t = 0 sa bude "kyvadlo" nachádzať v určitom bode (x_0, y_0) ($x_0 > 0$) v pokoji, t. j. derivácie $\dot{x}(0)$ a $\dot{y}(0)$ budú nulové. Pri zadanej energii E = 7.7813 J určuje y_0 začiatočnú polohu kyvadla¹¹. Na obrázkoch 34–37 sú uvedené trajektórie kyvadla vo fázovom podpriestore (x, y) ako aj Poincarého diagram (\dot{y}_n, y_n) a graf Poincarého zobrazenia pozostávajúci z bodov (y_{n-1}, y_n), pričom hodnoty y_n a \dot{y}_n sú zaznamenané v okamihoch, keď premenná x dosahuje maximálnu hodnotu ($\dot{x} = 0$ a x > 0). Hmotnosť m = 2.5 kg, k = 50 N/m, $l_0 = 0.6$ m, g = 9.8 m/s². Konečný čas sme zvolili $t_1 = 150$ s.

Je zrejmé, že systém má niekoľko *kvalitatívne* odlišných režimov. Ak kyvadlo spustíme z veľkej výšky, bude jeho pohyb chaotický, čo sa prejavuje na grafe Poincarého zobrazenia na obrázku 34 vpravo. Pri vhodne zvolenej začiatočnej výške (obrázok 35) bude systém vykonávať periodický

¹¹Pre *x*-ovú súradnicu máme $x_0 = \sqrt{\left[\sqrt{2\left(E - m \cdot g \cdot y_0\right)/k} + l_0\right]^2 - y_0^2}$

(75)

Obr. 34: Trajektória [x(t), y(t)] a graf zobrazenia Poincaré (y_{n-1}, y_n) v momentoch maximálnej odchýlky premennej x. Prípad $y_0 = 0.2$

Domovská stránka

Titulná strana

Domovská stránka

••

Celá strana

Zatvoriť

Koniec

Obr. 35: Trajektória [x(t), y(t)] a graf zobrazenia Poincaré (y_{n-1}, y_n) v momentoch maximálnej odchýlky premennej *x*. Prípad $y_0 = -0.04$

Obr. 36: Trajektória [x(t), y(t)] a graf zobrazenia Poincaré (y_{n-1}, y_n) v momentoch maximálnej odchýlky premennej x. Prípad $y_0 = -0.075$

Domovská stránka

Domovská stránka

Celá strana

Zatvoriť

Koniec

Obr. 37: Trajektória [x(t), y(t)] a graf zobrazenia Poincaré (y_{n-1}, y_n) v momentoch maximálnej odchýlky premennej x. Prípad $y_0 = -0.5$

Koniec

Obr. 38: Grafy zobrazenia Poincar
é (\dot{y}_n, y_n) v momentoch maximálnej odchýlky premenne
jx

pohyb, pri ďalšom znižovaní začiatočnej polohy prejde systém na kvaziperiodický režim. Tento sa prejavuje tým, že graf Poincarého zobrazenia je blízky určitej krivke, podobne aj Poincarého diagram na obrázku 38. Na tomto obrázku sú znázornené spoločne všetky režimy. Vonkajšie body odpovedajú chaotickému režimu, vnútorné body ležiace v blízkosti stredného oválu odpovedajú kvaziperiodickému režimu, podobne ako body v blízkosti piatich oválov. Periodický režim je reprezentovaný piatimi "bodmi" vnútri oválov.

7.2. Ljapunovov exponent a jeho určovanie

Jednou z kvantitatívnych charakteristík "chaotickosti" dynamického systému je exponent Ljapunova.

7.2.1. Ljapunovov exponent v prípade jednorozmerného diskrétneho systému

Uvažujme najprv jednorozmerný diskrétny dynamický systém, definovaný iteračným procesom

$$x_n = f(x_{n-1}), \qquad n \in \mathbb{N}.$$

Pri danom začiatočnom stave x_0 je teda definovaná postupnosť $(x_n)_{n=0}^{\infty}$, pričom $x_n = f^{[n]}(x_0)$. Ako sa prejaví "porucha" začiatočného stavu pri

veľkých hodnotách n? Ak poruchu začiatočného stavu označíme

$$\Delta x_0 = |\varepsilon|,$$

tak po n iteráciách dostávame porušenú hodnotu

$$\Delta x_n = \left| f^{[n]}(x_0 + \varepsilon) - f^{[n]}(x_0) \right| \approx \left| \varepsilon \cdot \left[f^{[n]} \right]'(x_0) \right|.$$

Ak existuje taká hodnota $\lambda(x_0)$, že pre dostatočne malé ε a dostatočne veľké n platí

$$\Delta x_n \approx |\varepsilon| \cdot \mathrm{e}^{n \cdot \lambda(x_0)},\tag{76}$$

potom hodnota $\lambda(x_0)$ slúži ako základ definície exponentu Ljapunova. V prípade platnosti (76) platí tiež

$$\ln \Delta x_n \approx n \cdot \lambda(x_0) + \ln \Delta x_0, \tag{77}$$

teda logaritmus odchýlky sa vyvíja lineárne s rastom *n*.

Definícia 60. Ak existuje limita

$$\lambda(x_0) = \lim_{n \to \infty} \lim_{\varepsilon \to 0} \frac{1}{n} \ln \left| \frac{f^{[n]}(x_0 + \varepsilon) - f^{[n]}(x_0)}{\varepsilon} \right| =$$

$$= \lim_{n \to \infty} \frac{1}{n} \ln \left| [f^{[n]}]'(x_0) \right|,$$
(78)

tak hodnota $\lambda(x_0)$ sa nazýva **exponent Ljapunova**.

Poznámka 7.1. Všimnime si, že táto hodnota závisí od začiatočného stavu x_0 .

Ak bude exponent Ljapunova záporný, je zrejmé, že sa porucha Δx_n bude s rastúcim *n* zmenšovať. To svedčí o stabilite daného iteračného procesu. Naopak, kladný exponent Ljapunova svedčí o veľmi rýchlom na-rastaní poruchy. V prípade ohraničeného fázového priestoru sa to prejaví chaotickým režimom.

Ak použijeme pravidlo derivovania zloženej funkcie, dostávame nasledujúci vzťah na výpočet exponentu Ljapunova

$$\lambda(x_0) = \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} \ln |f'(x_k)|,$$
(79)

kde postupnosť $(x_n)_{n=0}^{\infty}$ je definovaná iteračným vzťahom.

Poznámka 7.2. V praxi sa namiesto limity pri $n \to \infty$ použije aritmetický priemer logaritmov absolútnych hodnôt derivácií v jednotlivých bodoch x_k .

Na obrázku 39 je znázornený bifurkačný diagram logistického zobrazenia spolu s odpovedajúcimi hodnotami exponentu Ljapunova. Všimnite si, že tam, kde stabilný bod diagramu nadobúda hodnotu 0.5 (vtedy je superstabilný), nadobúda exponent Ljapunova najmenšiu zápornú hodnotu (v superstabilných bodoch je zrejme jeho teoretická hodnota rovná $-\infty$).

Koniec

zobrazený spolu s odpovedajúcimi exponentmi Ljapunova

7.2.2. Ljapunovov exponent v prípade spojitého systému

Prvá časť tohoto oddielu je spracovaná podľa knižky (RASBAND, 1997). Popíšeme postup určenia exponentu Ljapunova v prípade *n*-rozmerného dynamického systému, definovaného diferenciálnymi rovnicami

 $\dot{\boldsymbol{x}} = \boldsymbol{f}(\boldsymbol{x}).$

Riešenie štartujeme z nejakého bodu $x(0) = x_0$. Súbežne s rovnicami dynamického systému riešime aj nasledujúci systém

$$\dot{w}_i = \sum_{j=1}^n \frac{\partial f_i}{\partial x_j}(x,t) w_j,$$
(80)

alebo vo vektorovej forme s využitím Jacobiovej matice ∇f

 $\dot{w} = \nabla f \cdot w$,

pričom za w_0 volíme náhodný normovaný vektor.

Definícia 61. Ljapunovov exponent pre spojitý *n*-rozmerný systém odpovedajúci počiatočnému bodu x_0 definujeme ako

$$\lambda(\mathbf{x}_0, \mathbf{w}_0) = \lim_{t \to \infty} \frac{1}{t} \ln \|\mathbf{w}(t)\|.$$

Je zrejmé, že numericky nemôžeme počítať limitu pri $t \to \infty$, ale zastavíme sa pri nejakom dostatočne veľkom $t = T_{max}$. Aby sme sa vyhli

pretečeniu hodnôt, môžeme postupovať podľa knihy (RASBAND, 1997) nasledujúcim spôsobom: Začneme riešiť systém (80) z nejakého jednotkového vektora w_0 s normou $||w_0|| = 1$. V čase t_1 určíme normu $\alpha_1 = ||w(t_1)||$ a vektor w(t) prenormujeme: $w_1(t_1) = w(t_1)/\alpha_1$. Na ďalšom úseku $\langle t_1, t_2 \rangle$ riešime systém (80), kde namiesto vektora w(t) už vystupuje vektor $w_1(t)$. V čase t_2 určíme normu $\alpha_2 = ||w_1(t_2)||$ a vektor $w_1(t)$ prenormujeme: $w_2(t_2) = w_1(t_2)/\alpha_2$. Platí, že $||w(t_2)|| = \alpha_1 \cdot \alpha_2$.

Ďalej postupujeme analogicky. Dostávame

$$\|\boldsymbol{w}(t_n)\| = \prod_{i=1}^n \alpha_i.$$

Potom

$$\lambda(\mathbf{x}_0, \mathbf{w}_0) = \lim_{n \to \infty} \frac{1}{t_n} \ln \prod_{i=1}^n \alpha_i = \lim_{n \to \infty} \frac{1}{t_n} \sum_{i=1}^n \ln \alpha_i$$

Pre rovnaké časové odstupy, keď $t_k = k \Delta t$ dostávame

$$\lambda(\mathbf{x}_0, \mathbf{w}_0) = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n \ln \alpha_i / \Delta t.$$

Poznámka 7.3. Je zrejmé, že exponent Ljapunova závisí od výberu začiatočného vektora w_0 . Avšak dá sa očakávať, že náhodne zvolený vektor w_0 bude mať zložky zo všetkých invariantných podpriestorov.

7.3. Informácia a *K*-entropia

V knihe (RASBAND, 1997) sa uvádza súvis miery chaotičnosti dynamického systému a informačného obsahu (miery informácie) signálov. S tým súvisí aj tzv. Kolmogorova entropia (skrátene *K*-entropia). Pre nedostatok času, priestoru a najmä teoretických vedomostí, prenecháme túto oblasť zvedavému čitateľovi na samostatné štúdium.

7.4. Invariantná miera hustoty

V tomto oddieli stručne spomenieme súvis deterministického chaosu a teórie miery. Pochopenie tejto problematiky však úzko súvisí s pojmami Diracova delta-funkcia, distribúcie, hustota rozdelenia pravdepodobnosti, miera, ergodická teória. Tieto pojmy je potrebné naštudovať z odbornej literatúry.

7.4.1. Hustota rozdelenia pravdepodobnosti

Pri výskume vlastností spojitých náhodných premenných a javov súvisiacich s týmito premennými sa ako veľmi užitočný nástroj ukazujú **funkcie hustoty rozdelenia pravdepodobnosti**.

Definícia 62. Budeme hovoriť, že náhodná premenná *X* má **spojité rozdelenie**, ak existuje funkcia $\rho_X(x)$, pre ktorú platí

$$P(X < x) = \int_{-\infty}^{x} \rho_X(\xi) \,\mathrm{d}\xi,\tag{81}$$

kde P(X < x) je pravdepodobnosť javu, že náhodná premenná X nadobudne hodnotu menšiu ako x. Nezáporná funkcia ρ_X z rovnice (81) sa nazýva **hustota rozdelenia** náhodnej premennej X (ZVÁRA a ŠTĚPÁN, 2002).

Pomocou funkcie hustoty môžeme počítať pravdepodobnosti zložitých javov, napr.

$$P(a \le X \le b) = \int_a^b \rho(x) \, \mathrm{d}x$$

Príklad 46. Zrejme najdôležitejšie spojité rozdelenie sa nazýva **normované normálne rozdelenie** a má **hustotu**

$$\rho(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$$

Graf funkcie $\rho(x)$ sa nazýva **Gaussova** krivka.

Hovoríme, že náhodná premenná Y má normálne rozdelenie s parametrami μ a σ^2 , ak platí $Y = \sigma X + \mu$, kde X má normované normálne rozdelenie. Zapisujeme to $Y \sim N(\mu, \sigma^2)$. Je zrejmé, že pre normované nor-

málne rozdelenie môžeme písať $X \sim N(0, 1)$.

Príklad 47. V knihe (ZVÁRA a ŠTĚPÁN, 2002) je ukázané, že hustota náhodnej premennej $Y \sim N(\mu, \sigma^2)$ je

$$\rho_{Y}(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right].$$
(82)

Nech je daná funkcia g(x). Spolu s náhodnou premennou X sa môžeme zaujímať aj o náhodnú premennú Z = g(X), teda ak náhodná premenná X nadobudne hodnotu x, budeme hovoriť, že náhodná premenná Z nadobudla hodnotu g(x).

Definícia 63. Nech $\rho_X(x)$ je hustota náhodnej premennej *X*. **Strednú hodnotu** náhodnej premennej g(X) definujeme (ZVÁRA a ŠTĚPÁN, 2002) ako

$$E(g(X)) = \int_{-\infty}^{\infty} g(x) \rho_X(x) dx.$$
 (83)

Príklad 48. Nech g(x) = x. Potom zrejme

$$\mathrm{E}\left(\mathrm{X}\right) = \int_{-\infty}^{\infty} x \, \rho_{\mathrm{X}}(x) \, \mathrm{d}x$$

je stredná (priemerná) hodnota náhodnej premennej X.

Príklad 49. Nech náhodná premenná *X* nadobúda hodnoty z intervalu $\langle a, b \rangle$, pričom pravdepodobnosť, že hodnota *X* sa nachádza v určitom podintervale závisí len od dĺžky tohoto podintervalu. Určme strednú hodnotu náhodnej premennej *X*.

Riešenie. Z podmienky, že pravdepodobnosť je rovnaká pre podintervaly rovnakej dĺžky vyplýva, že hustota je konštantná na intervale $\langle a, b \rangle$ a nulová mimo neho. Preto platí

$$\rho(x) = \begin{cases} 1/(b-a), & x \in \langle a, b \rangle \\ 0, & x \notin \langle a, b \rangle \end{cases}$$

Teda máme

$$\operatorname{E}(X) = \int_{a}^{b} x \frac{1}{b-a} \, \mathrm{d}x = \frac{a+b}{2}$$

Úloha 40. Odvoď te vzorec hustoty rovnomerného rozdelenia z predchádzajúceho príkladu a overte správnosť výpočtu strednej hodnoty rovnomerného rozdelenia.

7.4.2. Diracova delta-funkcia

Funkciu $\varphi(x)$, ktorá je definovaná na \mathbb{R} , má na \mathbb{R} derivácie ľubovoľného rádu a ktorá je **finitná**, t. j. rovná nule mimo určitého konečného intervalu, budeme nazývať **základná** alebo tiež **testovacia** funkcia.

Diracovu delta-funkciu $\delta(x)$ môžeme definovať ako "funkciu", ktorá má nasledujúcu vlastnosť:

$$\int_{-\infty}^{\infty} \delta(x) \,\varphi(x) \,\mathrm{d}x = \varphi(0), \tag{84}$$

pre všetky testovacie funkcie $\varphi(x)$ a pre ktorú platí $\delta(x) = 0$ pre každé $x \neq 0$.

Dá sa ukázať, že žiadna reálna funkcia nemôže spĺňať podmienku (84). "Funkciu" $\delta(x)$ zaraďujeme medzi tzv. zovšeobecnené funkcie (distribúcie). Môžeme si ich predstaviť ako limitu postupnosti "normálnych" funkcií, ktoré majú určitú vlastnosť. Napríklad delta-funkciu si môžeme predstaviť ako limitu postupnosti hustôt normálnych rozdelení N(0, σ^2) pri $\sigma \rightarrow 0^+$.

Príklad 50. Ukážme, ako "funguje" delta-funkcia s posunutým argumentom.

Riešenie.

$$\int_{-\infty}^{\infty} \delta(x-x_i) g(x) \, \mathrm{d}x = \int_{-\infty}^{\infty} \delta(t) g(t+x_i) \, \mathrm{d}t = g(0+x_i) = g(x_i).$$

Príklad 51. Ukážme, že delta-funkcia je "párna"^a.

^{*a*}Na tomto mieste používame úvodzovky na zvýraznenie faktu, že delta-funkcia nie je funkcia a preto párnosť chápeme skôr formálne

Riešenie. Ukážeme, že "funkcia" $\delta(-x)$ spĺňa definíciu delta-funkcie.

$$\int_{-\infty}^{\infty} \delta(-x) \varphi(x) \, \mathrm{d}x = -\int_{-\infty}^{-\infty} \delta(t) \varphi(-t) \, \mathrm{d}t = \int_{-\infty}^{\infty} \delta(t) \varphi(-t) \, \mathrm{d}t = \varphi(-0) = \varphi(0).$$

Teda $\delta(-x) = \delta(x)$.

Príklad 52. Ukážme, že "derivácia" Heavisideovej funkcie jednotkového skoku je delta-funkcia.

Riešenie. Na úvod treba povedať, že nižšie uvedený "dôkaz" patrí medzi "chuligánske" dôkazy. Presný dôkaz uvedenej vlastnosti aj s pojmom derivácie zovšeobecnenej funkcie sa dá nájsť v odbornej literatúre.

Pre funkciu f(x) spojitú na intervale [a, b] existuje na tomto intervale jej primitívna funkcia v tvare $F(x) = \int_{a}^{x} f(t) dt$. Uvažujme teda primitívnu funkciu H(x) ku Diracovej delta-funkcii v tvare $H(x) = \int_{-\infty}^{x} f(t) dt$. Keďže pre x < 0

$$1 = \int_{-\infty}^{\infty} \delta(t) \, \mathrm{d}t = |\delta(t) = 0, \forall t \leq x < 0| = \int_{x}^{\infty} \delta(t) \, \mathrm{d}t,$$

musí platiť pre x < 0

$$\int_{-\infty}^{x} \delta(t) \, \mathrm{d}t = \int_{-\infty}^{\infty} \delta(t) \, \mathrm{d}t - \int_{x}^{\infty} \delta(t) \, \mathrm{d}t = 1 - 1 = 0.$$

Teda pre x < 0 je H(x) = 0. Podobne sa dokazuje fakt, že H(x) = 1 pre x > 0. Dôkaz prenechávame čitateľovi.

Teda funkcia H(x) má v bode x = 0 jednotkový skok a je rovná mimo neho Heavisideovej funkcii. V bode x = 0 nemá väčší zmysel ju definovať, snáď len z hľadiska možného použitia Laplaceovej transformácie je vhodné dodefinovať ju tak, aby bola spojitá zprava, teda položiť H(0) = 0.

Úloha 41. Ukážte, že H(x) = 1 pre x > 0.

7.4.3. Hustota iterácií diskrétneho zobrazenia

Ako SCHUSTER (1984) uvažujme teraz diskrétny dynamický systém

$$x_{n+1} = f(x_n), \quad x_n \in \langle 0, 1 \rangle, \quad n = 0, 1, 2, \dots$$
 (85)

Definícia 64. Invariantnú mieru $\rho_0(x)$ určujúcu hustotu iterácií (85) definujeme ako

$$\rho_0(x) = \lim_{N \to \infty} \frac{1}{N} \sum_{i=0}^{N-1} \delta(x - f^{[i]}(x_0)).$$
(86)

Poznámka 7.4. Vidíme, že miera $\rho_0(x)$ môže byť aj zovšeobecnená funkcia.

Na základe výsledku príkladu, uvedeného v predchádzajúcom oddieli (ak vezmeme do úvahy, že hodnoty x_i sú z intervalu (0, 1)), máme pre

"časovú" strednú hodnotu funkcie g(x)

$$\lim_{N \to \infty} \frac{1}{N} \sum_{i=0}^{N-1} g(x_i) = \lim_{N \to \infty} \frac{1}{N} \sum_{i=0}^{N-1} g(f^{[i]}(x_0)) =$$

$$= \lim_{N \to \infty} \frac{1}{N} \sum_{i=0}^{N-1} \int_0^1 \delta(x - f^{[i]}(x_0)) g(x) \, \mathrm{d}x =$$

$$= \int_0^1 g(x) \lim_{N \to \infty} \frac{1}{N} \sum_{i=0}^{N-1} \delta(x - f^{[i]}(x_0)) \, \mathrm{d}x = \int_0^1 g(x) \, \rho_0(x) \, \mathrm{d}x.$$
(87)

Pohyb vo fázovom priestore sa nazýva **ergodický** ak môžeme časovú strednú hodnotu nahradiť strednou hodnotou priestorovou. Rovnica (87) vyjadruje práve takúto rovnosť pre jednu trajektóriu, začínajúcu v bode x_0 .

Ak označíme $\rho_1(x)$ invariantnú mieru, definovanú s časovým oneskorením jednej iterácie (rovnako ako $\rho_0(x)$ v (86), len namiesto x_0 sa použije $x_1 = f(x_0)$), tak podľa knihy (SCHUSTER, 1984) platí

$$\rho_1(y) = \int_0^1 \delta(y - f(x)) \rho_0(x) \,\mathrm{d}x$$

Podobne aj pre d'alšie *n*:

$$\rho_{n+1}(y) = \int_0^1 \delta(y - f(x)) \,\rho_n(x) \,\mathrm{d}x.$$
 (88)

Na základe (86) však platí, že invariantná miera $\rho_n(x)$ je stacionárna, nezávislá na indexe *n*, reprezentujúcom časový posun. Z rovnice (88) tak dostaneme

$$\rho(y) = \int_0^1 \delta(y - f(x)) \,\rho(x) \,\mathrm{d}x. \tag{89}$$

Táto integrálna rovnica sa nazýva **rovnica Frobeniusa-Perrona**. Nebudeme skúmať otázky existencie a jednoznačnosti riešenia rovnice (89).

Príklad 53. Určme invariantnú mieru trojuholníkového zobrazenia definovaného v oddieli 5.1.3 vzťahom (55):

$$x_{n+1} = \Delta(x_n), \quad n = 0, 1, 2, \dots$$
 (90)

kde

$$\Delta(x) = \begin{cases} 2x, & x \in \langle 0, 1/2 \rangle \\ 2(1-x), & x \in \langle 1/2, 1 \rangle \end{cases}$$
(91)

Riešenie. Príklad uvádza SCHUSTER (1984) s drobným preklepom. Dosaď me $f(x) = \Delta(x)$ do rovnice (89). Postupne dostaneme

$$\rho(y) = \int_0^{1/2} \delta(y - 2x) \,\rho(x) \,\mathrm{d}x + \int_{1/2}^1 \delta(y - 2(1 - x)) \,\rho(x) \,\mathrm{d}x,$$

(s využitím vlastností delta-funkcie)

$$\int_0^{1/2} \delta(2x - y) \,\rho(x) \,\mathrm{d}x = \frac{1}{2} \int_0^{1/2} \delta(t - y) \,\rho\left(\frac{t}{2}\right) \,\mathrm{d}t = \frac{1}{2} \rho\left(\frac{y}{2}\right)$$

a tiež

$$\int_{1/2}^{1} \delta(2x - 1 + y - 1)) \rho(x) \, \mathrm{d}x =$$
$$= \frac{1}{2} \int_{0}^{1} \delta(t - (1 - y)) \rho(\frac{t + 1}{2}) \, \mathrm{d}t = \frac{1}{2} \rho(\frac{1 - y}{2})$$

Teda platí

$$\rho(y) = \frac{1}{2} \left[\rho\left(\frac{y}{2}\right) + \rho\left(\frac{1-y}{2}\right) \right].$$

Je zrejmé, že tejto rovnici vyhovuje funkcia $\rho(x) \equiv 1$. V knihe (SCHUSTER, 1984) je dokázaná jednoznačnosť tohoto riešenia. To znamená, že sme ukázali, že postupnosť x_0 , $f(x_0)$, $f(f(x_0))$, ... trojuholníkového zobrazenia rovnomerne pokrýva celý interval $\langle 0, 1 \rangle$.

7.5. Autokorelačná funkcia

Užitočnou pomôckou pri určovaní charakteru dynamického procesu je **autokorelačná funkcia**. Autokorelačná funkcia pre diskrétny dynamický systém (85) je definovaná v knižke (SCHUSTER, 1984) nasledujúcim spôsobom

$$C(m) = \lim_{N \to \infty} \frac{1}{N} \sum_{i=0}^{N-1} \hat{x}_{i+m} \hat{x}_i,$$
(92)

kde

$$\hat{x}_i = f^{[i]}(x_0) - \bar{x}, \qquad \bar{x} = \lim_{N \to \infty} \frac{1}{N} \sum_{i=0}^{N-1} f^{[i]}(x_0).$$
 (93)

Príklad 54. V knihe (SCHUSTER, 1984) je odvodená autokorelačná funkcia pre trojuholníkové zobrazenie (90–91). Pri výpočte bola použitá invariantná miera $\rho(x)$ tohoto zobrazenia. Výsledná funkcia

$$C(m) = \frac{1}{12} \,\delta_{m,0}$$

kde $\delta_{i,j}$ je symbol Kroneckera, svedčí o tom, že jednotlivé za sebou nasledujúce iterácie sú nekorelované — je to ďalšia ukážka "náhodnosti" tohoto zobrazenia.

Definícia na základe vzťahov (92–93) je dosť nepraktická. RASBAND (1997) uvádza inú definíciu **autokorelačnej funkcie** (bez použitia strednej hodnoty \bar{x}) pre množinu vzoriek $x_i = x(i \cdot \Delta t), i = 0, 1, ..., N - 1$. Pre túto funkciu je uvedená spojitosť s výkonovým spektrom "nameraného signálu".

My použijeme inú **modifikáciu autokorelačnej funkcie**. Pre N "nameraných vzoriek" x_i zadefinujeme

$$\hat{C}(m) = \frac{1}{N/2} \sum_{i=0}^{N/2-1} \hat{x}_{i+m} \hat{x}_i, \qquad m = 0, 1, \dots, N/2 - 1, \qquad (94)$$

Domovská stránka Titulná strana Obsah 44 •• Strana 230 z 348 Späť Celá strana Zatvoriť Koniec

kde

$$\hat{x}_i = x_i - \bar{x}, \qquad \bar{x} = \frac{1}{N} \sum_{i=0}^{N-1} x_i.$$
 (95)

Poznámka 7.5. Je zrejmé, že takto definovaná funkcia sa dá určovať aj v prípade konečného počtu "vzoriek" a dá sa očakávať, že pri dostatočne veľkom počte N bude mať podobné vlastnosti ako má autokorelačná funkcia C(m).

Poznámka 7.6. AKRITAS, AKISHIN, ANTONIOU, BONUSHKINA, DROSSINOS, IVANOV, KALINOVSKY, KORENKOV a ZRELOV (2002); ANTONIOU, IVANOV, IVANOV a ZRELOV (2003) používajú nasledujúci tvar autokorelačnej funkcie, pričom odkazujú na knihu (ABARBANEL, 1996):

$$C(m) = \frac{\sum_{i=1}^{K} (x_{i+m} - \bar{x})(x_i - \bar{x})}{\sum_{i=1}^{K} (x_i - \bar{x})^2}, \qquad \bar{x} = \frac{1}{K} \sum_{i=1}^{K} x_i$$

7.6. Výkonové spektrum

O spektrálnej analýze sa dočítate napríklad v knihe (BENDAT a PIERSOL, 1980). Výkonové spektrum nám odpovedá na otázku: "Aká časť signálu odpovedá frekvencii ω ?" Ak uvažujeme signál (spojitý časový rad) x(t), $t \in (-\infty, \infty)$, tak výkonové spektrum $S(\omega)$ môžeme definovať ako

$$S(\omega) = C \cdot |\tilde{x}(\omega)|^2, \qquad (96)$$

kde

$$\tilde{x}(\omega) = \int_{-\infty}^{\infty} x(t) e^{-i\omega t} dt$$
(97)

je Fourierov obraz signálu x(t) (výsledok Fourierovej transformácie, aplikovanej na signál), C > 0 je konštanta, i je imaginárna jednotka.

Ak poznáme Fourierov obraz funkcie $\tilde{x}(\omega)$, tak funkciu x(t) získame pomocou inverznej Fourierovej transformácie

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \tilde{x}(\omega) e^{i\omega t} d\omega.$$
(98)

Poznámka 7.7. Používa sa aj "symetrický" tvar Fourierovej transformácie, kde pred obidvoma integrálmi je rovnaký člen $1/\sqrt{2\pi}$.

Poznámka 7.8. Napríklad Fourierov obraz funkcie $\cos t$ je rovný "funkcii" $\pi(\delta(\omega + 1) + \delta(\omega - 1))$, kde $\delta(\omega)$ je Diracova delta-funkcia. Preto výkonové spektrum funkcie $\cos t$ pozostáva z dvoch spektrálnych čiar v bodoch $\omega = \pm 1$, čo odpovedá frekvencii funkcie $\cos t$.

V praxi sa však stretávame skôr s diskrétnym signálom, definovaným na intervale $0 \le t \le T$. Predpokladajme, že v určitých časových okamihoch $t_k = k \cdot \Delta t, k = 0, 1, ..., N - 1$ sme "namerali" odpovedajúce hodnoty x_k . Potom **diskrétna Fourierova transformácia** vektora $\mathbf{x} = (x_0, x_1, ..., x_{N-1})$

je definovaná nasledujúcim spôsobom:12

$$\tilde{x}_{l} = \sum_{k=0}^{N-1} x_{k} e^{-i 2\pi k l/N},$$
(99)

čo môžeme zapísať ako $\tilde{x} = DFT(x)$. Index l = 0, 1, ..., N - 1 odpovedá hodnotám $\omega_l = l \cdot 2\pi/(N \Delta t)$.

Spätná (inverzná) diskrétna Fourierova transformácia je daná vzťahom

$$x_k = \frac{1}{N} \sum_{l=0}^{N-1} \tilde{x}_l \,\mathrm{e}^{\mathrm{i}\,2\pi\,k\,l/N},\tag{100}$$

čo zapíšeme ako $\mathbf{x} = \text{IDFT}(\tilde{\mathbf{x}})$.

Takto prirodzene prichádzame k **diskrétnemu výkonovému spektru**. Treba upozorniť, že existuje tzv. **Nyquistova kritická frekvencia** $f_c = 1/(2\Delta t)$. Ak je signál x(t) tvorený len zložkami s frekvenciami nižšími ako je Nyquistova frekvencia, potom je dostatočne popísaný konečným počtom hodnôt *x*.

Na obrázku 40 sú znázornené **diskrétne výkonové spektrum** (ďalej len spektrum) a jeho dekadický logaritmus (dole) pre dve funkcie

$$x_1(t) = \sin(2t-1) + \cos(2.3t+1)$$
 a $x_2(t) = \sin(2t-1) + \cos(4t+1)$.

¹²Môžeme sa stretnúť aj s trochu modifikovanou definíciou, uvedené definície DFT a IDFT sú v súlade s MATLABom.

Koniec

Obr. 40: Výkonové spektrum a jeho logaritmus v prípade funkcií zložených z dvoch harmonických signálov

Na rozdiel od spojitého spektra, kde by sme sa stretli s kombináciou spektrálnych čiar, v diskrétnom prípade vidíme výrazné vrcholy pri jednotlivých frekvenciách. Keďže v prvom prípade sú frekvencie blízke, dva vrcholy sa "zliali" do jedného.

Na ďalšom obrázku 41 vidíme spektrá náhodného signálu vygenerovaného použitím MATLABovského príkazu rand(512) a signálu, vytvoreného na základe iteračného vzorca $x_{n+1} = 3 x_n \mod 1$, pri $x_0 = \sqrt{3}/2$. Vidíme, že spektrá majú rovnaký charakter.

Úloha 42. Porovnajte výkonové spektrá náhodného signálu a signálov $x(t) = t^2$, x(t) = t, resp. x(t) = 1/(t+1).

7.6.1. Súvis výkonového spektra a autokorelačnej funkcie

Vyššie, vzťah (92) sme definovali autokorelačnú funkciu

$$C(m) = \lim_{N \to \infty} \frac{1}{N} \sum_{i=0}^{N-1} \hat{x}_{i+m} \hat{x}_i,$$

$$\hat{x}_i = x_i - \bar{x}, \qquad \bar{x} = \lim_{N \to \infty} \frac{1}{N} \sum_{i=0}^{N-1} x_i$$

V knižke (RASBAND, 1997) (strany 184–185) je úkázané, že pre diskrétnu funkciu

$$\mathcal{C}_{\gamma} = rac{1}{N}\sum_{k=0}^{N-1} \hat{x}_{k+\gamma}\,\hat{x}_k$$

Koniec

Obr. 41: Výkonové spektrum a jeho logaritmus v prípade náhodného a deterministického chaotického signálu

platí

$$C_{\gamma} = \frac{1}{N^2} \sum_{l=0}^{N-1} |\tilde{x}_l|^2 \,\mathrm{e}^{-\mathrm{i}\,2\pi\,\gamma\,l/N}. \tag{101}$$

Teda autokorelačnú funkciu môžeme získať nasledujúcim spôsobom:

- 1. Od vstupného signálu x_k prejdeme na odchýlku od strednej hodnoty signál \hat{x}_k .
- 2. Vypočítame diskrétnu Fourierovu transformáciu $\tilde{\hat{x}} = \text{DFT}(\hat{x})$.
- 3. Vypočítame inverznú diskrétnu Fourierovu transformáciu druhých mocnín absolútnych hodnôt (komplexných) zložiek vektora \tilde{x} a výsledok delíme hodnotou $N C_{\gamma} = \text{IDFT}(|\tilde{x}_l|^2)/N$.

Príklad 55. Porovnajme autokorelačné funkcie periodických a náhodných/chaotických signálov.

Riešenie. Na obrázku 42 sú znázornené autokorelačné funkcie periodických funkcií $x_1(t)$ a $x_2(t)$, počítané na základe vzťahov (94), resp. (101) (s menšími amplitúdami). Na obrázku 43 sú znázornené autokorelačné funkcie náhodného a deterministického chaotického signálu popísaného vyššie, počítané na základe vzťahov (94), resp. (101).

Úloha 43. Porovnajte autokorelačné funkcie náhodného signálu a signálov x(t) = t a $x(t) = t^2$. Domovská stránka Titulná strana Obsah 44 •• Strana 237 z 348 Späť Celá strana Zatvoriť Koniec

Koniec

Obr. 43: Autokorelačné funkcie náhodného a deterministického chaotického signálu

7.7. Korelačná a fraktálna dimenzia atraktorov

Podľa práce (WILLIAMS, 1997) je **korelačná dimenzia** v súčasnosti najpopulárnejšia miera dimenzie. Podobá sa na **informačnú dimenziu**, ale je trochu zložitejšia. Doplňujúce informácie nájdete v článku (DVOŘÁK a ŠIŠKA, 1991).

Všeobecné princípy korelačnej dimenzie boli pôvodne navrhnuté pre štandardné fázové priestory, na skúmanie logistického, Hénonovho a Lorenzovho atraktora (GRASSBERGER a PROCACCIA, 1983). Autori tejto práce však súčasne navrhli využiť na skúmanie vlastností atraktorov Takensovu **metódu časových oneskorení** (TAKENS, 1980, 1983).

7.7.1. Korelačný súčet a korelačná dimenzia

Uvažujme, ako je uvedené v knihe (WILLIAMS, 1997), množinu *N* vektorov $\mathcal{V} = \{\mathbf{x}_i \in \mathbb{R}^M\}_{i=1}^{N}$ ¹³. Pre zvolenú hodnotu $\varepsilon > 0$ budeme spočítavať počty bodov množiny \mathcal{V} , ktoré sa nachádzajú vo vnútri ε -okolí so stredmi, umiestnenými postupne vo všetkých vektoroch množiny \mathcal{V} .

Najprv uvažujeme okolie bodu x_1 (guľu s polomerom ε so stredom v bode x_1). Označme n_1 počet prvkov množiny \mathcal{V} , ktoré ležia vo vnútri tejto gule, teda pre ktoré platí $||x_k - x_1|| < \varepsilon$.¹⁴ Postup opakujeme pre všetkých *N* bodov množiny \mathcal{V} , získame tak počty n_k , k = 1, 2, ..., N.

¹³Namiesto preistoru *M*-tíc je možné uvažovať prvky iného metrického priestoru.

¹⁴V (WILLIAMS, 1997) sa uvádza, že stredy okolí sa do súčtu nezarátavajú. My ich budeme zaratávať, čím sa vyhneme problémom s logaritmovaním korelačných súčtov pri malých hodnotách ε

Definícia 65. Korelačným súčtom C_{ε} budeme nazývať číslo

 $C_{\varepsilon} = \frac{\text{celkový počet bodov vnútri }\varepsilon\text{-okolí}}{\text{maximálny počet možných bodov}} = \frac{n_1 + n_2 + \dots + n_N}{N^2}.$ (102)

Poznámka 7.9. Počet bodov vo vnútri jednotlivých gulí sa delí maximálnym možným počtom takýchto bodov, teda C_{ε} je **normovaná** hodnota. Pri veľmi veľkej hodnote ε budú v každej guli všetky body množiny \mathcal{V} , teda celkový počet bude $N \cdot N = N^2$. Pre dostatočne veľké ε bude teda $C_{\varepsilon} = 1$.

Ukazuje sa, že pre hodnoty ε z určitého intervalu platí

$$C_{\varepsilon} \approx c \cdot \varepsilon^{\gamma}.$$
 (103)

Číslo ν sa nazýva korelačný exponent alebo korelačná dimenzia (atraktora).¹⁵

Po zlogaritmovaní vzťahu (103) dostávame

$$\log C_{\varepsilon} \approx \nu \cdot \log \varepsilon + \log c. \tag{104}$$

Teda body ($\log \varepsilon$, $\log C_{\varepsilon}$) získané pre jednotlivé hodnoty ε sa pri zobrazení v dvojnásobne logaritmickej škále budú nachádzať v blízkosti priamky,

 $^{^{15}}$ V skutočnosti sa korelačná dimenzia definuje ako limita korelačného koeficientu pri $N \rightarrow \infty$. Dá sa očakávať, že pre dostatočne veľké konečné N sa táto hodnota priblíži k tejto limite. Je asi dobré určiť korelačný koeficient pre rôzne hodnoty N a sledovať ho ako funkciu N

Domovská stránka

Celá strana

Zatvoriť

Koniec

Obr. 45: Závislosť korelačných súčtov od veľkosti ε v dvojnásobne logaritmickej škále pre Hénonov atraktor a tri rôzne druhy vektorovej normy

Späť

Celá strana

Zatvoriť

Koniec

Obr. 46: Závislosť korelačného exponenta od počtu vzoriek N pre $\|\cdot\|_2$

neho dynamického systému

$$\begin{array}{rcl} x_{n+1} &=& 1 - a \, x_n^2 + y_n, \\ y_{n+1} &=& b \, x_n, \end{array} \tag{105}$$

ktorý navrhol HÉNON (1976), pre hodnoty parametrov a = 1.4 a b = 0.3. Korelačné súčty sú zobrazené na obrázku 45 pre normy vektora $\|\cdot\|_1$, $\|\cdot\|_2$ a $\|\cdot\|_{\infty}$. Korelačné exponenty pre normu $\|\cdot\|_2$ sú pre rôzne počty vzoriek zobrazené na obrázku 46. Vidno, že pre väčšie počty sa už exponent Tabuľka 2: Korelačný exponent ν_N Hénonovho atraktora pre rôzny počet vzoriekN

N	100	200	500	1000	2000
$\ \cdot\ _1$	1.0249	1.1106	1.1396	1.1505	—
$\ \cdot\ _2$	1.0298	1.0925	1.1146	1.1217	1.1195
$\ \cdot\ _{\infty}$	1.0257	1.0758	1.0946	1.0983	

výrazne nemení. Korelačné exponenty pre rôzne normy a počty vzoriek N sú vypísané v tabuľke 2. SCHUSTER (1984) uvádza, že Hausdorfova dimenzia tohoto atraktora je D = 1.26.

7.7.2. Metóda časových oneskorení

DVOŘAK a ŠIŠKA (1991) uvádzajú, že metóda časových oneskorení je najjednoduchší a asi aj najlepší spôsob rekonštrukcie viacrozmerného signálu z jednorozmerného. Nech má pôvodný dynamický systém dimenziu stavového priestoru rovnú *M*. Priemetom atraktoru do jedného rozmeru nech vznikne signál $(x_i)_{i=1}^N$. Z tohoto signálu vytvoríme nový *K*-rozmerný "signál" x_i^K nasledujúcim spôsobom

$$(x_i^K) = ([x_i, x_{i+\tau}, x_{i+2\tau}, \dots, x_{i+(K-1)\tau}]),$$
 (106)

kde τ je vhodné oneskorenie (celý násobok vzorkovacieho kroku). K sa nazýva dimenzia vnorenia. Potom, ak platí

$$K \ge 2M + 1$$

reprezentuje nami vytvorený "proces" v *K*-rozmernom priestore pohyb po atraktore, ktorý má vlastnosti zhodné s atraktorom pôvodného študovaného dynamického systému. Ďalej len uvedieme príklad použitia metódy časových oneskorení v prípade Lorenzovho atraktora.

Predtým, ako zaujímavosť uveďme znenie vety, citovanej v článku (DVOŘÁK a ŠIŠKA, 1991).

Veta. Nech 0 < M < n. Ak je *E suslinovská* množina v \mathbb{R}^n a ak je dim $E \leq M$, tak existuje *borelovská* množina v priestore ortogonálnych projekcií $p : \mathbb{R}^n \to \mathbb{R}^M$ taká, že jej doplnok má nulovú mieru vzhľadom na prirodzene rotačne invariantnú mieru na projekciách a pre všetky $p \ge G$ je dim $pE = \dim E$.

Táto veta ilustruje, nakoľko povrchne sa tu venujeme danej problematike. Len na pochopenie jej znenia by sme museli naštudovať podstatne viac látky, ako uvádzame v tejto knižke.

Príklad 57. Porovnajme korelačné dimenzie (exponenty) Lorenzovho atraktora a jeho jednotlivých zložiek (jednorozmerných priemetov), vnorených využitím metódy časového oneskorenia do priestorov dimenzie K = 1, 2, 3 a 4.

Riešenie. Lorenzov systém diferenciálnych rovníc sme riešili metódou Rungeho-Kuttovou 4. rádu s konštantným krokom $\Delta t = 0.01$ na časovom intervale $\langle 0, 2000 \rangle$. Začiatočný vektor bol $\mathbf{x}_0 = [5, -5, 20]^T$. Zvolili sme $\tau = 113$, t. j. nezaznamenávali sme všetky vypočítané vzorky. Korelačné exponenty sme určovali pre hodnoty $\varepsilon = 0.1, 0.6, 3.6$ a 21. SCHUSTER (1984)

Tabuľka 3: Korelačné dimenzie v_K Lorenzovho atraktora v závislosti od dimenzie vnorenia *K*

ν	ν_1	ν_2	ν_3	$ v_4$
1.9568	0.9220	1.7217	2.2180	2.3903

odkazuje na prácu (GRASSBERGER a PROCACCIA, 1983) a uvádza výsledok $D_2 = 2.05$ pre korelačnú dimenziu určenú z originálneho trojrozmerného signálu vo fázovom priestore aj pre korelačnú dimenziu určenú metódou časového oneskorenia premennej x(t) vnorením do 3-rozmerného priestoru.

V tabuľke 3 sú uvedené a na obrázku 47 sú znázornené korelačné exponenty pre jednotlivé hodnoty ε , pre dimenzie vnorenia K = 1, 2, 3 a 4. Vidíme, že v dvojnásobne logaritmickej mierke je závislosť prakticky lineárna.

Na obrázku 48 vidíme závislosť korelačnej dimenzie od dimenzie vnorenia. Súvislou čiarou je vyznačený korelačný exponent rátaný z pôvodného 3-rozmerného signálu. Vidíme, že pre vyššie dimenzie vnorenia sa korelačné dimenzie príliš nelíšia, hoci sa nedá hovoriť o úplnej zhode. Je možné, že pri zvýšení počtu bodov by bol rozdiel dimenzií ešte menší.

Domovská stránka

Celá strana

Zatvoriť

Koniec

Obr. 47: Závislosť logaritmov korelačných súčtov od logaritmu ε pre Lorenzov atraktor

Domovská stránka

Celá strana

Zatvoriť

Koniec

Obr. 48: Závislosť korelačných exponentov Lorenzovho atraktora od dimenzie vnorenia

7.8. Chaos a zložitosť

Pri skúmaní nameraných údajov nás samozrejme zaujíma **miera náhodnosti** týchto údajov. Keď sa pozrieme na nasledujúce postupnosti cifier 0 a 1

01100101001111010010110010 (107)

010101010101010101010101 (108)

vidíme, že druhá postupnosť vyzerá byť menej náhodná ako prvá.

Podobné postupnosti môžeme vytvoriť napríklad triedením nameraných údajov x_k , keď ich zaradíme do dvoch tried, reprezentovaných ciframi 0 a 1. Pri viacerých triedach sa použijú ďalšie cifry, prípadne iné znaky. **Roztriedené namerané údaje** sú teda chápané ako **reťazce znakov**.

7.8.1. Algoritmická zložitosť

Definícia 66. Algoritmickou zložitosťou reťazca je dĺžka najkratšieho programu potrebného na vytvorenie daného reťazca, meraná v bitoch.

Prakticky nie je dôležité ustanoviť minimálny program, stačí určiť zložitosť rádovo. Zvážte napríklad, koľko znakov by si vyžiadal program na vypísanie reťazcov typu (107) a (108), keby v "rovnakom duchu" pokračovali ďalej. Ukážte, že pri dĺžke reťazca n, by program na výpis reťazca

prvého typu (náhodného) zabral rádovo n pozícií, na výpis reťazca druhého typu by stačil program s rádovo log(n) bitmi. Podrobnejšie úvahy nájdete v knihe (RASBAND, 1997).

7.8.2. *LZ*-zložitosť a jej meranie

RASBAND (1997) uvádza, že v roku 1976 navrhli Lempel a Ziv nižšie popísanú mieru zložitosti reťazca, ktorú budeme skrátene nazývať *LZ*-zložitosť (anglicky complexity).

Definícia 67. *LZ*-zložitosť reťazca určuje počet rôznych vzorov, ktoré je potrebné skopírovať na zreprodukovanie reťazca.

Stručne vysvetlíme postup určenia *LZ*-zložitosti. Uvažujme reťazec $S = s_1s_2...s_n$, kde $s_i \in A$, A je abeceda. $S\pi$ označuje "odrezanie" posledného znaku reťazca S, teda $S\pi = s_1s_2...s_{n-1}$. Slovníkom (vocabulary) reťazca S - v(S) – sa nazýva množina všetkých podreťazcov S. Napríklad

 $v(0010) = \{0, 1, 00, 01, 10, 001, 010, 0010\}.$

Bez podrobnejšieho vysvetlenia uvedieme tri príklady určenia zložitosti c(S) reťazca S, presný popis nájdete v knihe (RASBAND, 1997). Veríme, že na týchto príkladoch pochopíte algoritmus určovania LZ-zložitosti.

S = 0000

1. 0.

2.
$$Q = 0, SQ = 0 \cdot 0, v(SQ\pi) = \{0\}$$
, teda $Q \in v(SQ\pi)$.
3. $Q = 00, SQ = 0 \cdot 00, v(SQ\pi) = \{0,00\}$, teda $Q \in v(SQ\pi)$.
4. $Q = 000, SQ = 0 \cdot 000, v(SQ\pi) = \{0,00,000\}$, teda $Q \in v(SQ\pi)$.
Teda $S = 0 \cdot 000$ a $c(S) = 1 + 1 = 2$.
 $S = 0010$
1. 0 .
2. $Q = 0, SQ = 0 \cdot 0, v(SQ\pi) = \{0\}$, teda $Q \in v(SQ\pi)$.
3. $Q = 01, SQ = 0 \cdot 01, v(SQ\pi) = \{0,00\}$, teda $Q \notin v(SQ\pi)$.
4. $Q = 0, SQ = 0 \cdot 01 \cdot 0, v(SQ\pi) = \{0,00,01,001\}$, teda $Q \in v(SQ\pi)$.
Teda $S = 0 \cdot 01 \cdot 0$ a $c(S) = 2 + 1 = 3$.¹⁶
 $S = aabcb$
1. a .
2. $Q = a, SQ = a \cdot a, v(SQ\pi) = \{a\}$, teda $Q \in v(SQ\pi)$.
3. $Q = ab, SQ = a \cdot ab, v(SQ\pi) = \{a, aa\}$, teda $Q \notin v(SQ\pi)$.

 $\overline{\ ^{16}2+1}$ znamená 2 bodky plus 1. LZ-zložitosť je počet vložených bodiek (plus 1, ak sa reťazec nekončí bodkou).

Domovská stránka
Titulná strana
Obsah
•
Strana 251 z 348
Späť
Celá strana
Zatvoriť
Koniec

4.
$$Q = c$$
, $SQ = a \cdot ab \cdot c$, $v(SQ\pi) = \{a, b, aa, ab, aab\}$, teda $Q \notin v(SQ\pi)$.

5. Q = b, $SQ = a \cdot ab \cdot c \cdot b$, $v(SQ\pi) = \{a, b, c, aa, ab, bc, aab, abc, aabc\}$, teda $Q \in v(SQ\pi)$.

Teda $S = a \cdot ab \cdot c \cdot b$ a c(S) = 3 + 1 = 4.

Lempel a Ziv ukázali, že LZ-zložitosť náhodného reťazca dĺžky *n* je

$$b(n) = \frac{h \cdot n}{\log_K(n)},\tag{109}$$

kde *K* je počet znakov abecedy A a *h* označuje **normalizovanú entropiu zdroja**, teda **informáciu**, delenú maximálnou informáciou získanou v prípade rovnako pravdepodobných stavov (RASBAND, 1997):

$$h = \frac{-1}{\log K} \sum_{i=1}^{K} p_i \log p_i \le 1, \qquad p_i = \frac{k_i}{n},$$
(110)

kde k_i je počet výskytov *i*-ho symbolu v reťazci *S*. V prípade rovnako pravdepodobných stavov bude $p_i = 1/K$ a teda h = 1.

Po určení čísla c(S(n)) (S(n) je časť reťazca S dĺžky n) sa porovnáva jeho hodnota s hodnotou b(n). Ak je limita

$$\lim_{n\to\infty}\frac{c(S)}{b(n)}$$
menšia ako 1, môžeme urobiť záver, že sa v reťazci *S* vytvárajú vzory.

Úloha 44. Určte LZ-zložitosť reťazca S = 010101010101010.

Úloha 45. Určte LZ-zložitosť reťazca S = 0001101001000101.

Úloha 46. Vytvorte program na určovanie *LZ*-zložitosti a použite ho na štúdium *LZ*-zložitosti orbít logistického zobrazenia pri rôznych hodnotách parametra *r*, prípadne pre iné známe chaotické dynamické systémy.

7.9. Arnol'dove zobrazenie — premiešavanie

Dynamické systémy Hénona a Lorenza sú príkladmi disipatívnych systémov, pre ktoré sa objem elementu fázového priestoru s časom zmenšuje a trajektórie sa približujú ku zvláštnemu atraktoru. Podľa vety Poincarého-Bendikssonovej však v ohraničenej oblasti dvojrozmerného priestoru nemôže existovať chaotický tok. Dynamický systém Hénona je teda chaotický len vďaka tomu, že je diskrétny (SCHUSTER, 1984).

Príkladmi nedisipatívnych systémov slúžia **transformácia pekára** (vaľkanie cesta a jeho prekladanie zachováva objem (SCHUSTER, 1984)) a **Arnoľdove zobrazenie** definované vzťahmi (ARNOĽD, 1978)

$$\begin{aligned} x_{n+1} &= x_n + y_n \mod 1, \\ y_{n+1} &= x_n + 2y_n \mod 1. \end{aligned}$$
 (111)

Toto zobrazenie zachováva obsah. Zobrazenie sa dá pekne interpretovať ako transformácia natiahnutia a pootočenia na anuloide-pneumatike (SCHUSTER, 1984). Na obrázku 49 je znázornená funkcia Arnoľdovho zobrazenia. Keby v rovniciach (111) neboli členy mod 1, potom by sa mačka nachádzajúca sa v jednotkovom štvorci pretransformovala na mačku v kosodĺžniku. Spomínané členy mod 1 zabezpečia, že sa obraz dostane znova naspäť do pôvodného jednotkového štvorca. Kosodĺžnik sa "rozreže" na 4 časti, ktoré sa potom poukladajú tak, ako je to ukázané v pravom dolnom štvorci, avšak budú sa nachádzať v ľavom štvorci.

Tu sa stretávame s javom **premiešavania**. Zobrazenie tak silno deformuje každý kúsok povrchu, že po istom čase sa rozmaže po celom anuloide. Podobne sa kvapka atramentu pri premiešavaní rozdelí po celom objeme pohára.

Príklad 58. Znárornime transformáciu stredu jednotkového štvorca pri Arnoľdovom zobrazení.

Riešenie. Na obrázku 50 vidíme začiatočný stav, obrázky po prvej štvrtej a pätnástej iterácii. Vidno, že po štyroch iteráciách je už všetko dosť premiešané. Počas jednotlivých iterácií vznikajú rôzne zaujímavé konfigurácie. Napríklad po 15. iterácii vznikli akoby menšie kópie pôvodného obrázku. Po tridiatich iteráciách sa pôvodná konfigurácia (pri 40 bodoch v každom smere) zopakuje, pri inom počte delení je perióda iná.

Úloha 47. Znázornite časť orbity definovanej Arnoľdovym zobrazením so začiatočným bodom $(x_0, y_0) = (\sqrt{3}/2, \sqrt{2}/3)$.

Koniec

Obr. 50: Obraz štvorca na začiatku, po prvej, štvrtej a po pätnástej iterácii Arnoľdovho zobrazenia

... Navyše, praktické zamestnanie je vo všeobecnosti záchranou takých ľudí, ako som ja; akademická sféra činnosti núti mladých ľudí k neustálej vedeckej produkcii a len silné povahy môžu pritom odolať pokušeniu povrchnej analýzy.

Termodynamika – to je jediná fyzikálna teória, o ktorej som presvedčený, že v rámci použiteľnosti jej základných pojmov nebude nikdy vyvrátená.

Einstein (KUZNECOV, 1963).

8. Chaos a šum

V tejto kapitole pootvoríme okienko do kuchyne štatistickej fyziky (pozri, napríklad, (KVASNIKOV, 1987)) a umožníme čitateľovi nahliadnuť dnu, aby sa mohol oboznámiť s niektorými postupmi používanými v tejto zaujímavej oblasti.

V predchádzajúcich kapitolách tejto učebnej pomôcky sa dôraz kládol na pochopenie a analýzu chaotických (neregulárnych, náhodných) procesov vznikajúcich v dôsledku nestability a nelinearity uvažovaných dynamických systémov. V danej kapitole sa sústredíme na skúmanie systémov, ktoré sú "vnorené" do určitého prostredia (termostatu). Toto prostredie ovplyvňuje procesy prebiehajúce v uvažovanom systéme neregulárnym

spôsobom, teda ho "zašumuje". Tento šum je možné zahrnúť v dynamike systému ako určitú vonkajšiu náhodnú silu. Je evidentné, že aj veličiny, ktoré popisujú systém (napríklad prúd v rádioelektronických lampách) budú neregulárne (náhodné). Uvedená situácia je dostatočne univerzálna. Príklady zašumených systémov pozorujeme všade okolo seba, či už v živej a neživej prírode alebo aj v spoločenských a ekonomických procesoch. Patrí sem dobre známy Brownov pohyb (KVASNIKOV, 1987), ktorý v roku 1827 pozoroval Robert Brown. Ďalej môžeme uviesť šum v rádiolektronických a im podobných zariadeniach, tepelný šum, zašumenosť tzv. procesov zrodu a zániku (smrti), charakteristických pre rôzne typy chemických reakcií a populačné procesy v ľudskej spoločnosti či zvieracej ríši a nakoniec zašumenosť procesov charakterizujúcich finančné toky na svetových burzách (GARDINER, 1985; VAN KAMPEN, 1984; PETERS, 1996). Exaktný matematický popis týchto procesov budeme najprv demonštrovať na historicky prvom preskúmanom už spomenutom Brownovom pohybe. Je to chaotický pohyb dostatočne veľkých častíc v kvapalnom alebo v plynnom prostredí, ktorý vzniká v dôsledku neregulárnych zražok týchto častíc s oveľa menšími časticami okolia. Prvýkrát teoreticky tento pohyb objasnil EINSTEIN (1905). Tento rok možno považovať za rok zrodu stochastického modelovania prírodných javov.

8.1. Brownov pohyb

Súbor brownovských častíc možno považovať za ideálny plyn, čo znamená, že samotné častice medzi sebou neinteragujú. V takomto prípade je pohyb každej častice nezávislý na pohybe ostatných častíc, a preto je možné pri ďalších úvahách sledovať pohyb jednej častice. Nakoniec aj tak prejdeme k pravdepodobnostnému popisu evolúcie celého systému. Obrázok 51 ilustruje pohyb jednej brownovskej častice pre časové úseky rôznych dĺžok *n*. Budeme uvažovať homogénny systém a v ňom jednu brownovskú časticu. Keďže v tomto prípade sú všetky smery *x*, *y*, *z* ekvivalentné a pohyby pozdĺž týchto súradníc sú nezavislé, na úplný popis dynamiky častice je postačujúce sledovať pohyb pozdĺž jednej z nich, napr. v smere *x*. Na túto časticu s hmotnosťou *m* pôsobia dve sily:

- **Brzdná sila** vyvolaná viskóznym trením, ktorá, ako je známe, je proporcionálna rýchlosti častice v = dx/dt s opačným znakom (*x* určuje polohu častice, *t* označuje čas), pričom koeficient proporcionality $\gamma \equiv m\Gamma$ je rovný $6\pi\eta R$ (známy vzťah z klasickej hydrodynamiky), kde η je viskozita a *R* označuje polomer sférickej častice.
- **Fluktuačná sila** *F*, ktorá je vyvolaná neustále sa opakujúcimi chaotickými nárazmi s molekulami prostredia (kvapaliny, plynu). S rovnakou pravdepodobnosťou je kladná aj záporná.

Potom podľa druhého Newtonovho zákona (zmena hybnosti častice p = mv v čase je vyvolaná sumou všetkých na ňu pôsobiacich síl) napíšeme

Koniec

Obr. 51: Znázornenie Brownovho pohybu v rovine

rovnicu

$$\frac{\mathrm{d}p}{\mathrm{d}t} = -\Gamma p + F,\tag{112}$$

s počiatočnou podmienkou $p(0) = p_0$. Túto rovnicu ako prvý odvodil LAN-GEVIN (1908), ktorého meno rovnica nesie. Používa sa aj názov stochastická diferenciálna rovnica.

Nižšie budeme túto rovnicu riešiť. Postup pri riešení bude odlišný od toho, na aký sme boli zvyknutí pri riešení diferenciálnych rovníc. Pretože sila *F* je neregulárna, je zbytočné sledovať detaily pohybu brownovskej častice, keďže tento pohyb je tiež veľmi chaotický a má nízku predikatívnu hodnotu. Napriek tomu je (ako uvidíme ďalej) možné sledovať rôzne ostredované¹⁷ charakteristiky, napríklad stredne kvadratické odchýlky hybnosti (polohy) častice od jej strednej hybnosti (počiatočnej polohy). Veličiny takéhoto typu sú experimentálne verifikovateľné. Preto rovnicu (112) budeme riešiť tak, aby sme dospeli k výrazom pre rôzne stredné hodnoty. Na tejto ceste, ktorá povedie k štatistickému popisu systému, budeme zároveň definovať, čo chápeme pod strednými veličinami.

Preintegrovaním rovnice (112) podľa času je možné formálne riešenie napísať v tvare:

$$p = p_0 e^{-\Gamma t} + \int_0^t e^{-\Gamma(t-t_1)} F(t_1) dt_1, \qquad (113)$$

kde sme použili počiatočnú podmienku.

¹⁷Namiesto výrazu "priemerné" (spriemerované) budeme často používať výraz "ostredované".

Langevinova rovnica (112) a jej rôzne zovšeobecnenia je typická pre mnohé stochastické systémy (niektoré z nich budeme analyzovať neskôr), pričom sila *F* má dostatočne univerzálny tvar. Preto podrobnejšie preskúmame jej štruktúru.

Interakcia brownovskej častice s polomerom *R* s prostredím je charakterizovaná nasledovnými typickými časovými škálami:

- čas, ktorý uplynie medzi jednotlivými zrážkami $\tau' \sim 10^{-17} 10^{-16}$ s,
- čas trvania zrážky častice s prostredím $\tau \sim 10^{-12}$ s,
- čas, za ktorý sa vymaže informácia o počiatočnom stave (prvý člen na pravej strane (113) zanikne) $\tau_M \cong 1/\Gamma \sim 10^{-10}$ s.

Je zrejmé, že platia nerovnosti $\tau' \ll \tau \ll \tau_M$. Funkcia F(t) je znázornená na obrázku 52 ako súhrn jednotlivých vkladov od každej zrážky. Na obrázku 53 sú znázornené jednotlivé vklady s časom "chvenia" (oscilácií) $\sim \tau'$ a s priemernou dobou trvania zrážky τ .

Môžeme si položiť otázku ako často sila *F* bude nadobúdať určitú hodnotu. Ak na horizontálnej osi budeme nanášať hodnoty sily *F* a na vertikálnej osi počet prípadov, kedy sila nadobudne tú istú hodnotu potom zostrojíme tzv. histogram (pozri obrázok 54), ktorý fakticky znázorňuje hustotu pravdepodobnosti pre silu *F*. Správanie sa tejto sily v čase môžeme "merat" a časové závislosti typu 52 môžeme zostrojovať pre ľubovoľné časové intervaly. Vidíme, že toto správanie sa je veľmi nepravidelné a v

Domovská stránka

Zatvoriť

Koniec

Obr. 53: Ilustrácia rôznych časových škál

podstate nepredpovedateľné, avšak histogram si zachováva svoju formu nezávisle od času. Podrobnejšia analýza tejto formy ukazuje, že hustota pravdepodobnosti $\mathcal{P}(F(t))$ má s vysokou presnosťou gaussovský priebeh (viď stranu 221 oddielu 7.4.1): Časy τ a τ' na obrázkoch sú príliš veľké a ich rozdiel je príliš malý na to, aby sa spomenuté vlastnosti zjavne preukázali.

Strednú hodnotu ľubovoľnej veličiny *X*, ktorá závisí od sily *F*, vypočítame v čase *t* pomocou vzťahu:

$$\langle X(F(t))\rangle = \int_{-\infty}^{\infty} X(F(t))\mathcal{P}(F(t)) \,\mathrm{d}F(t), \tag{114}$$

kde integrovanie prebieha cez všetky možné hodnoty sily F. Vzťah (114) je funkcionálnym zovšeobecnením Definície 7.4 oddielu 7.4.1 (náhodná premenná F v našom prípade závisí od času).

Zátvorky $\langle ... \rangle$ znamenajú, ako je všeobecne prijaté, stredovanie cez tzv. štatistický súbor s váhou \mathcal{P} . V našom prípade štatistický súbor tvoria už spomínané hodnoty (realizácie) veličiny *F*.

Zmysel takéhoto štatistického stredovania sa dá pochopiť pomocou nasledovného príkladu. Ak meriame nejakú veličinu s určitou chybou merania, potom jej strednú hodnotu nájdeme tak, že jednotlivé namerané hodnoty sčítavame s určitou váhou (čo je vlastne pravdepodobnosť výskytu tejto hodnoty). Vzťah (114) je spojitou analógiou uvedeného príkladu. Na základe fyzikálnych predpokladov môžeme považovať funkciu $\mathcal{P}(F)$ za párnu, a preto je stredná hodnota samotnej sily *F*, ktorá je nepárna, rovná nule.

Koniec

Domovská stránka

Môžeme si sformulovať úlohu, čomu bude rovná stredná hodnota súčinu dvoch hodnôt sily pri dvoch rôznych časoch $F(t_1) \cdot F(t_2)$, resp. súčinu troch $F(t_1) F(t_2) F(t_3)$, štyroch $F(t_1) F(t_1) F(t_3) F(t_4)$, atď. hodnôt sily pri rôznych časoch. Takéto veličiny $\langle F(t_1) F(t_2) \dots F(t_n) \rangle$ sú známe ako korelačné funkcie *n*-tého rádu a majú veľkú výpovednú hodnotu o správaní sa štatistického systému.

Pre gaussovské rozdelenie sú všetky nepárne korelácie rovné nule (nepárna funkcia pod integrálom v (114)) a všetky párne korelácie pre n > 2 sa vyjadrujú cez párnu korelačnú funkciu D pre n = 2! Zdôraznime, že párna korelačná funkcia $D(t, t') = \langle F(t) F(t') \rangle$ je funkcionálnym zovšeobecnením autokorelačnej funkcie definovanej vzťahom (92) v kapitole 7.5.

Venujme sa teda podrobnejšie tvaru tejto párnej korelačnej funkcie. Keď vezmeme hodnoty sily F v dvoch rôznych časoch t a t', z obrázku 52 je jasné, že ak platí, $|t - t'| \gg \tau$ potom $\langle F(t)F(t') \rangle = 0$, čo vyjadruje len ten fakt, že hodnoty sily F sú pri uvedených časových hodnotách nezávislé (zrážky brownovskej častice s okolím sú v čase vzájomne nezávislé, ak časové intervaly medzi jednotlivými zrážkami sú väčšie ako τ). Výber samotných časových hodnôt t a t' je irelevantný, čo znamená, že veličina $\langle F(t)F(t') \rangle$ v skutočnosti závisí len od rozdielu t - t':

$$D(t,t') = \langle F(t) F(t') \rangle = f(t-t'), \qquad (115)$$

kde funkcia *f* je prakticky nenulová len vo veľmi úzkom časovom intervale $|t - t'| \leq \tau$ a jej spojitý priebeh sa dá, napríklad, aproximovať obdĺžnikom (skokovou funkciou) (viď obrázok 55).

Zatvoriť

Koniec

Obr. 55: Schématické tvary párnej korelačnej funkci
ef(t)

Označme

$$I = \int_{-\infty}^{\infty} f(t) \,\mathrm{d}t = A \,\tau, \tag{116}$$

kde *A* je amplitúda *f*. Pri ďalších úvahách konkrétny tvar *f* nie je dôležitý, budeme len požadovať, aby sa hodnota *I* sily *F* zachovávala pri ľubovoľnom výbere *f*. Ak budeme pri meraní času vyberať dostatočne veľkú "makroskopickú" škálu (malé rozlíšenie), konkrétne takú, že merané hodnoty *t* budú oveľa väčšie ako charakteristická škála τ , potom sa nám interval $(-\tau, \tau)$ bude javiť ako veľmi malý (v limitnom prípade nekonečne malý), preto môžeme *f* aproximovať Diracovou delta-funkciou, (viď kapitolu 7.4.2). Keďže *I* sa zachováva a z definície Diracovej funkcie vyplýva, že

$$\int_{-\infty}^{\infty} \delta(t) \, \mathrm{d}t = \int_{-\tau}^{\tau} \delta(t) \, \mathrm{d}t = 1 \,, \tag{117}$$

párna korelácia sily F sa vyjadrí vzťahom

$$\langle F(t) F(t') \rangle = A \tau \,\delta(t - t'). \tag{118}$$

Toto je definícia tzv. *bieleho šumu*, ktorý vyjadruje nekorelovanosť uvažovaných stochastických procesov v čase a je charakteristický pre mnohé deje prebiehajúce v rôznych štatistických systémoch, ktoré sme spomínali na začiatku tejto kapitoly, a v ktorých môžeme zanedbať tzv. pamäťové efekty.

Teraz sme už pripravení riešiť Langevinovu rovnicu (112). Stredovaním

rovnice (113) cez štatistický súbor F dostávame strednú hodnotu hybnosti:

$$\langle p \rangle = p_0 e^{-\Gamma t}, \qquad (\langle F \rangle = 0).$$
 (119)

Pre odklon hybnosti Δp od jej strednej hodnoty dostávame:

$$\Delta p \equiv p - \langle p \rangle = \int_0^t e^{-\Gamma(t-t_1)} F(t_1) \, \mathrm{d}t_1 \,. \tag{120}$$

Umocnenie tejto rovnice a následné ostredovanie vedie k vzťahu, ktorý určuje stredne kvadratický odklon (disperziu) pre hybnosť p (v závislosti od času)

$$\left\langle (\Delta p)^2 \right\rangle \equiv \left\langle (p - \langle p \rangle)^2 \right\rangle = \int_0^t \mathrm{d}t_1 \int_0^t \mathrm{d}t_2 \,\mathrm{e}^{-\Gamma(t-t_1)} \,\mathrm{e}^{-\Gamma(t-t_2)} \left\langle F(t_1)F(t_2) \right\rangle. \tag{121}$$

Substitucia $t' = t_1 - t_2$ a dosadenie párnej korelačnej funkcie zo vzťahu (118) nám dáva ($t_2 < t$):

$$\langle (\Delta p)^2 \rangle = A\tau \int_0^t \mathrm{d}t_2 \mathrm{e}^{-2\Gamma(t-t_2)} \int_{-t_2}^{t-t_2} \mathrm{d}t' \delta(t') \mathrm{e}^{-\Gamma t'}.$$
 (122)

Preintegrovaním dospejeme ku konečnému tvaru pre $\langle (\Delta p)^2 \rangle$

$$\langle (\Delta p)^2 \rangle = \left(1 - e^{-2\Gamma t}\right) \frac{A\tau}{2\Gamma}.$$
 (123)

V limite $t \to \infty$ disperzia $\langle (\Delta p)^2 \rangle$ nadobúda konečnú hodnotu $A\tau/2\Gamma$, teda relaxuje k určitému rovnovážnemu stavu. Je jasné, že týmto konečným

stavom je stav termodynamickej rovnováhy brownovskej častice s okolím, ktorý, ako je známe z rovnovážnej termodynamiky, je charakterizovaný maxwellovskou distribúciou pre rýchlosti, resp. pre hybnosti týchto častíc (to isté ako pre ideálny plyn). Pre takúto distribúciu je disperzia rovná:

$$\langle (\Delta p)^2 \rangle = m \, k \, T, \tag{124}$$

kde *T* označuje absolútnu teplotu uvažovaného systému a *k* je Boltzmanova konštanta. Preto vzťah (123), ktorý popisuje evolúciu veličiny $\langle (\Delta p)^2 \rangle$ v makroskopickej časovej škále ($t \gg \tau$) nadobúda tvar

$$\langle (\Delta p)^2 \rangle = m \, k \, T \left(1 - \mathrm{e}^{-2\Gamma t} \right). \tag{125}$$

V čase $t \sim \tau_M = 1/2\Gamma$ brownovská častica dosiahne maxwellovské rozloženie podľa rýchlosti (hybnosti): po uplynutí tohto času $t \sim 1/2\Gamma$ už počiatočná hodnota hybnosti častice p_0 neurčuje jej ďalší pohyb! Pre malé časy $t \ll 1/2\Gamma$ (ale samozrejme $t \gg \tau$) dostávame charakteristickú pre Brownov pohyb lineárnu závislosť disperzie od t:

$$\langle (\Delta p)^2 \rangle = 2\Gamma m k T t = 2\gamma k T t.$$
 (126)

Toto je známy *Einsteinov vzťah pre disperziu* a je kľúčový v celej teórii Brownovho pohybu. Ukazuje, že pre časy $t \gg \tau \sim 10^{-12}$ s dostávame pre $\langle (\Delta p)^2 \rangle$ výsledok, ktorý nie je možné predpovedať na základe predstavy o čisto mechanickom pohybe brownovskej častice. Podľa takejto predstavy by platilo $\langle (\Delta p)^2 \rangle \sim t^2$.

Podobne môžeme sledovať ako sa mení súradnica *x* brownovskej častice:

$$\frac{dx}{dt} = \frac{p}{m}, \qquad (127)$$

s počiatočnou podmienkou $x(0) = x_0$. Pri riešení tejto rovnice a hľadaní rôznych korelácií pre *x* postupujeme podobne ako pri riešení rovnice pre hybnosť. Čitateľ sa môže pokúsiť zopakovať tento postup aj pre rovnicu (127), preto ďalej uvedieme len výsledky. Pri výpočte disperzie *x* sa integruje štvornásobne.

Úloha 48. Ukážte, že

$$\langle x \rangle = x_0 + \frac{p_0}{m\Gamma} \left(1 - e^{-\Gamma t} \right).$$
(128)

(Návod: využite riešenie (113).)

Pre disperziu sme dostali vzťah

$$\left\langle (x - x_0)^2 \right\rangle = \left[\frac{p_0}{m \Gamma} \right]^2 \left[1 - e^{-\Gamma t} \right]^2 + \frac{A\tau}{2m^2 \Gamma^3} \left[2\Gamma t + 4e^{-\Gamma t} - e^{-2\Gamma t} - 3 \right].$$
(129)

Pre strednú dráhu $\langle x \rangle$ (na základe (128)) a stredne kvadratickú odchýlku $\langle (x - x_0)^2 \rangle$ od počiatočnej polohy x_0 (na základe (129)) pre malé časy $t \ll 1/\Gamma$ (samozrejme v makroskopickej škále $t \gg \tau$) máme:

$$\langle x \rangle \simeq x_0 + v_0 t, \qquad \left\langle (x - x_0)^2 \right\rangle \simeq v_0^2 t^2,$$
(130)

Zatvoriť

Koniec

Obr. 56: Časové závislosti disperzie polohy a strednej hodnoty druhej mocniny hybnosti brownovskej častice

kde $v_0 = p_0/m$ označuje počiatočnú rýchlosť častice. Vidíme, že pre takéto časové intervaly sa ešte zachováva mechanický charakter pohybu Brownovej častice (v danom prípade je to rovnomerný pohyb), hoci disperzia $\langle (\Delta p)^2 \rangle$ sa už určuje z Einsteinovho vzťahu (126).

V prípade veľkých časov $t \gg 1/\Gamma$ (na základe (128) a (129)) dostávame vzťahy:

$$\langle x \rangle \simeq x_0 + v_0 / \Gamma, \quad \langle (x - x_0)^2 \rangle \simeq 2 \frac{kT}{\gamma} t, \quad \langle (\Delta p)^2 \rangle = \langle p^2 \rangle = m kT, \quad (131)$$

ktoré udávajú, že pre tieto časové škály sa stredne kvadratická hybnosť (rýchlosť) určuje už štatistickou hodnotou m k T a kvadratická odchýlka súradnice od počiatočnej hodnoty je určená Einsteinovym vzťahom (pozri obrázok 56).

To znamená, že na tomto štádiu brownovská častica úplne zabudne svojú "mechanickú minulost" a ďalší proces nadobúda akoby nezotrvačný charakter.

Podobne môžeme ukázať, že pre nepárne vyššie korelácie platí:

$$\langle (\Delta p)^{2k+1} \rangle = \langle (x - x_0)^{2k+1} \rangle = 0 \qquad \text{pre } k \ge 1.$$
 (132)

Je to vďaka tomu, že nepárne korelácie sily *F* sú rovné nule (gaussovosť).

Naviac všetky vyššie párne korelácie *F* sa dajú vyjadriť ako mocninové funkcie párnej korelácie *D* definovanej v (115). Ako dôsledok pre vyššie párne korelácie odchýlky $x - x_0$ dostávame

$$\langle (x-x_0)^{2k} \rangle \simeq = t^k, \quad \text{pre } k \ge 1.$$
 (133)

Je jasné, že ak začneme počítať čas nie od nuly, ale od t_0 , tak vo vyššie uvedených vzťahoch treba t zameniť na $t - t_0 = \Delta t$.

8.2. Šum v rádioelektronických prístrojoch

Na rannom štádiu vývoja rádia, kedy intenzity šírených signálov boli malé a používali sa primitívne prijímače, každý posluchač si všimol prítomnosť veľkého počtu neregulárnych elektrických signálov. Tieto vznikali buď v atmosfére, alebo v prijímači, resp. vo vysielači a získali všeobecný názov "šumy". Ďalej podrobnejšie popíšeme tzv. "praskavý šum". Naším cieľom je uviesť ešte jeden príklad fyzikálneho neregulárneho procesu, ktorý sa popisuje Langevinovou rovnicou. Okrem toho, týmto príkladom chceme upriamiť pozornosť čitateľa na niektoré nové technické aspekty pri riešení stochastických diferenciálnych rovníc oproti našej skúsenosti pri riešení štandardných (nestochastických) diferenciálnych rovníc.

8.2.1. Fyzikálny popis elektrónovej lampy

V elektrónových lampách je elektrický prúd nestacionárny: je vytváraný jednotlivými elektrónmi, ktoré sa na určitom intervale svojej dráhy urýchľujú a po dosiahnutí anódy v rôznom čase, jej odovzdajú svoj náboj. Elektrický prúd, ktorý vzniká pri takomto procese, je možné zapísať v tvare:

$$I(t) = \sum_{k=1}^{N} S(t - t_k)$$
(134)

kde $S(t - t_k)$ označuje vklad elektrónu, ktorý dopadol na anódu v čase t_k . To znamená predpoklad o tom, že elektróny vytvárajú eletrické impulzy rovnakého tvaru, ale s rôznym (každý so svojím) časovým oneskorením, ako je to ukázané na obrázku 57. Štatistický aspekt procesu je schovaný vo výbere časov t_k . Najjednoduchší výber spočíva v tom, že každý elektrón dopadá na anódu nezávisle od ostatných elektrónov. To znamená, že časy t_k v danom časovom intervale, napr. $(-\infty, \infty)$ sú distribuované náhodne, pričom priemerný počet dopadov za jednotku času je zadaný. O exaktný teoretický popis uvažovaného šumu sa prvýkrát pokúsil SCHOTTKY (1918). Avšak teória tohto šumu sa intenzívne rozpracovávala trochu neskôr v rokoch 1920–1930 a konečnú podobu jej dal RICE (1944, 1945).

8.2.2. Odvodenie diferenciálnej rovnice pre pravdepodobnosť

Keďže proces je náhodný, v jeho popise musíme zohľadniť tento aspekt. Počet elektrónov *n*, ktoré dopadnú na anódu do času *t* je štatistickou veličinou popisovanou pravdepodobnosťou P(n, t). Budeme predpokladať, že pravdepodobnosť dopadu jedného elektrónu v časovom intervale $(t, t + \Delta t)$ nezávisí od *t* a *n* (čo je realizáciou tvrdenia o štatistickej nezávislosti časov t_k) a je úmerná Δt . Pravdepodobnosť preskoku jedného elektrónu je potom daná vzťahom

$$P(n \to n+1, v \text{ priebehu } \Delta t) = \lambda \Delta t,$$
 (135)

kde λ je konštanta úmernosti.

Domovská stránka

Zatvoriť

Koniec

Obr. 57: Schématické znázornenie prúdu (134) pre S(t) zo vzťahu (146)

Označme A_k jav, pri ktorom do času t dopadne práve k elektrónov. Do času $t + \Delta t$ môže dopadnúť n elektrónov tak, že už v čase t ich dopadlo n a neuskutočnil sa žiaden preskok za čas Δt , alebo do času t dopadlo práve n - 1 elektrónov a za čas Δt preskočil práve jeden elektrón, alebo do času t dopadlo práve n - 2 elektrónov a za čas Δt preskočili práve dva elektróny, atd'. . . . Javy A_0, A_1, \ldots, A_n vytvárajú systém hypotéz a preto sa pravdepodobnosť $P(n, t + \Delta t)$ bude počítať ako úplná pravdepodobnosť pomocou podmienených pravdepodobností

$$P(n,t+\Delta t) = P(n,t)(1-\lambda\Delta t) + P(n-1,t)\lambda\Delta t + P(n-2,t)(\lambda\Delta t)^{2} + \cdots$$
(136)

Odtiaľ dostávame

$$\frac{P(n,t+\Delta t)-P(n,t)}{\Delta t} = -\lambda P(n,t) + \lambda P(n-1,t) + \lambda^2 \Delta t P(n-2,t) + \cdots$$
(137)

Limitným prechodom $\Delta t \rightarrow 0$ dostávame diferenciálnu rovnicu

$$\frac{\partial P(n,t)}{\partial t} = \lambda \left[P(n-1,t) - P(n,t) \right].$$
(138)

Táto rovnica je typická pre popis procesov zrodu a zániku (smrti) v biologických systémoch, resp. pre určitú triedu chemických reakcií, preto je užitočné nájsť riešenie tejto rovnice a ukázať prechod k ekvivalentnému popisu pomocou Langevinovej rovnice.

8.2.3. Metóda generujúcej funkcie

Definujme si tzv. generujúcu funkciu

$$G(s,t) = \sum_{n=0}^{\infty} s^n P(n,t) .$$
 (139)

Metóda generujúcej funkcie sa často používa pri riešení niektorých diferenciálnych rovníc. Rovnicu (139) prepíšeme za predpokladu P(-1, t) = 0na rovnicu pre generujúcu funkciu

$$\frac{\partial G(s,t)}{\partial t} = \lambda(s-1)G(s,t).$$
(140)

a hneď určíme aj jej riešenie

$$G(s,t) = e^{\lambda (s-1)t} G(s,0).$$
(141)

Úloha 49. Odvoď te rovnicu (140) za predpokladu P(-1, t) = 0.

Požiadavka o tom, že pri t = 0 žiadne elektróny nestihli dopadnúť na anódu vedie k podmienke pre pravdepodobnosť P(0,0) = 1, P(n,0) = 0pre všetky $n \ge 1$, a preto G(s,0) = 1. Rozložením riešenia (141) podľa mocnín *s* dostávame pravdepodobnosť P(n,t) v tvare:

$$P(n,t) = \frac{\mathrm{e}^{-\lambda t} \, (\lambda t)^n}{n!} \,, \tag{142}$$

ktorá je známa ako Poissonove rozdelenie.

Poznámka 8.1. Poissonove rozdelenie pravdepodobností sa používa aj v iných "nefyzikálnych" situáciách, kde dochádza k jednotlivým navzájom nezávislým udalostiam, ako napríklad príchody áut na križovatku, alebo objavovanie sa objednávok v najrôznejších oblastiach služieb.

Úloha 50. Rozložte riešenie (141) podľa mocnín *s*.

Veličina N(t) = n je určujúcou premennou Poissonovho procesu. Z definície N(t) je jasné, že veličina

$$\mu = \frac{\mathrm{d}N(t)}{\mathrm{d}t} \tag{143}$$

je skoro všade rovná nule okrem okamihov, kedy sa N(t) zväčšuje o jednotku, preto táto funkcia je sumou Diracovych delta-funkcií (pozri príklad o derivovaní Heavisideovej funkcie v časti 7.4.2):

$$\mu(t) = \sum_{k=1}^{N} \delta(t - t_k) , \qquad (144)$$

kde t_k – časy dopadov jednotlivých elektrónov na anódu – boli zavedené vo vzťahu (134).

Poznámka 8.2. Derivácie tu chápeme v zovšeobecnenom zmysle, pre čitateľa stačí, ak si osvojí fakt, že zovšeobecnená derivácia kladného jednotkového skoku (nespojitej funkcie!) je vhodne posunutá Diracova deltafunkcia.

8.2.4. Odvodenie diferenciálnej rovnice pre prúd

Pomocou (144) a definície Diracovej funkcie môžeme výraz (134) pre elektrický prúd prepísať v tvare

$$I(t) = \sum_{k=1}^{N} S(t - t_k) = \sum_{k=1}^{N} \int_{-\infty}^{\infty} S(x) \,\delta(t - t_k - x) \,\mathrm{d}x = |t' = t - x,$$

$$\mathrm{d}t' = -\mathrm{d}x, \quad x = -\infty \to t' = \infty, \quad x = \infty \to t' = -\infty| = \qquad (145)$$

$$= \int_{-\infty}^{\infty} S(t - t') \,\sum_{k=1}^{N} \delta(t' - t_k) \,\mathrm{d}t' = \int_{-\infty}^{\infty} S(t - t') \,\mu(t') \,\mathrm{d}t',$$

teda prúd I(t) je konvolúciou funkcie S(t) a funkcie $\mu(t)$.

Prirodzené ohraničenia na funkciu S(t - t') spočívajú v tom, že je rovná nule pri t < t' a $t \rightarrow \infty$. Prvá podmienka znamená, že pred dopadom elektrónu na anódu je elektrický prúd nulový. Druhá znamená, že impulz, ktorý vyvolá elektrón, sa v konečnom dôsledku utlmí. Konkrétny tvar funkcie *S* nie je dôležitý a pre jednoduchosť sa často berie v tvare, ktorý spĺňa uvedené podmienky, napríklad:

$$S(t) = \begin{cases} q e^{-\alpha t}, & (t > 0) \\ 0, & (t < 0), \end{cases}$$
(146)

kde *q* a α sú voľné parametre. Teda pre t' > t bude S(t - t') = 0. Pomocou tohto vzťahu prepíšeme (145) v tvare

$$I(t) = \int_{-\infty}^{t} q e^{-\alpha(t-t')} \mu(t') dt'.$$
 (147)

Derivovanim poslednej rovnice dospejeme k diferenciálnej rovnici pre elektrický prúd ${\cal I}(t)$

$$\frac{dI(t)}{dt} = [q e^{-\alpha(t-t')} \mu(t')]_{t'=t} + \int_{-\infty}^{t} (-\alpha q) e^{-\alpha(t-t')} \mu(t') dt'.$$
(148)

Použitím vzťahov (143) a (147) dostaneme

$$\frac{dI(t)}{dt} = -\alpha I(t) + q \,\mu(t). \tag{149}$$

Je to stochastická diferenciálna rovnica Langevinovho typu, avšak fluktuačná sila je určená členom $q \mu(t)$, kde μ je derivácia premennej Poissonovho procesu a je sumou Diracovych delta-funkcií.

8.3. Fokkerova-Planckova rovnica

Pri skúmaní náhodných procesov poskytuje funkcia hustoty rozdelenia pravdepodobnosti úplnú informáciu o štatistických vlastnostiach systému. Riešením Fokkerovej-Planckovej rovnice je možné získať funkciu hustoty pre širokú triedu náhodných procesov. Nasledujúca časť je určená pre zvedavých, trpezlivých a odvážnych čitateľov.

Vo všeobecnosti môžeme uvažovať časticu vo vonkajšom potenciálnom poli. Vtedy na ňu bude pôsobiť ešte sila $F_U = -\frac{\partial U}{\partial x}$, kde U je potenciál. Sila F_U sa pridá ešte na pravú stranu rovnice (112).

8.3.1. Chapmanova-Kolmogorova-Smoluchowského rovnica

Definujme si rozdeľovaciu funkciu $\rho(t_0, x_0|t, x)$ (hustotu pravdepodobnosti) takú, že veličina $\rho(t_0, x_0|t, x) dx$ určuje pravdepodobnost' nájsť brownovskú časticu v intervale (x, x + dx) v čase t, ak sa táto v čase t_0 nachádzala v bode x_0 . Nech je táto funkcia normovaná na jednotku a vyhovuje počiatočnej podmienke, ktorá zodpovedá tomu, že brownovská častica sa v čase $t = t_0$ nachádza v bode $x = x_0$:

$$\int \rho(t_0, x_0 | t, x) dx = 1 \text{ pre všetky } t \text{ a } \rho(t_0, x_0 | t_0, x) = \delta(x - x_0).$$
(150)

Poznámka 8.3. Všetky integrály v tejto časti budeme pre jednoduchosť písať bez hraníc, hoci máme stále na mysli integrály $\int_{-\infty}^{\infty}$, ako napríklad v rovnici (150).

Ako sme už spomínali, charakteristickou nemechanickou črtou uvažovaných procesov pri makroskopickej časovej škále $t \gg 1/\Gamma$ je ich "neinerčnost" (strata pamäti o počiatočnom stave). To znamená, že každý medzistav brownovskej častice môžeme považovať za počiatočný. "Neinerčnost" procesu d'alej znamená, že funkcia $\rho(t_0, x_0|t, x)$ je nezávislá na procesoch, ktoré sa udiali pred časom t_0 , a teda je úplne jedno akým spôsobom sa častica k okamihu t_0 dostala do bodu x_0 . Funkcia $\rho(t_0, x_0|t, x)$ taktiež nenesie žiadnu informáciu o tom, cez aké medzistavy sa častica za čas $t - t_0$ dostala z bodu x_0 do bodu x. Takéto procesy sú známe ako *markovovské procesy*.

Uvažujme dva za sebou idúce časové intervaly (t_0, t) a $(t, t + \Delta t)$ a nasledovný súčin pravdepodobností:

$$[\rho(t_0, x_0 | t, x') \, \mathrm{d}x' \cdot \rho(t, x' | t + \Delta t, x) \mathrm{d}x; \quad t_0 < t < t + \Delta t.$$
(151)

Keďže prechody pre dva za sebou idúce časové intervaly sú vzájomne nezávislé, daný súčin udáva pravdepodobnosť nájsť časticu v okamihu $t + \Delta t$ v intervale (x, x + dx) ak v čase t_0 sa táto nachádzala v bode x_0 a v okamihu t v intervale (x', x' + dx').

Poznámka 8.4. Hodnoty d*x* považujeme za dostatočne malé v tom zmysle, že môžeme stotožniť bod x' s hociktorým iným bodom intervalu (x', x' + dx').

Preintegrovaním cez všetky možné medzistavy x' v čase t dostaneme rozdeľovaciu funkciu $\rho(t_0, x_0|t + \Delta t, x)$:

$$\rho(t_0, x_0 | t + \Delta t, x) = \int \rho(t_0, x_0 | t, x') \,\rho(t, x' | t + \Delta t, x) \,\mathrm{d}x' \,. \tag{152}$$

Toto je známa *Chapmanova-Kolmogorovova-Smoluchowského* (CHKS) rovnica (SMOLUCHOWSKI, 1906, 1915, 1916). Obyčajne sa uvažujú prípady, kedy žiadny časový okamih *t* nie je špeciálne vyčlenený oproti ostatným časovým okamihom, preto funkcia $\rho(t_0, x_0|t, x)$ závisí od času homogénne: $\rho(t_0, x_0|t, x) = \rho(0, x_0|t - t_0, x) = \rho(x_0|t - t_0, x)$. Rovnica homogénneho v čase markovovského procesu tak nadobúda tvar:

$$\rho(x_0|t + \Delta t, x) = \int \rho(x_0|t, x') \,\rho(x'|\Delta t, x) \,\mathrm{d}x', \quad 0 < t < t + \Delta t. \quad (153)$$

Poznámka 8.5. Budeme používať rovnaké označenie *ρ* pre obidve funkcie (jedna závisí od štyroch, druhá od troch argumentov).

Rovnica (153) je nelineárnou integrálnou rovnicou, a preto má veľa riešení, medzi nimi aj nefyzikálne. Fyzikálne zmysluplné riešenie pre pohyb brownovskej častice musí vyhovovať podmienkam (132)–(132), ktoré teraz môžeme prepísať pomocou našej rozdeľovacej funkcie takto (podobne ako vyššie, uvažujeme $t_0 = 0$, $\Delta t = t - t_0 = t$):

$$\frac{\langle x'-x\rangle}{\Delta t} |_{\Delta t\to 0} = \int \frac{x'-x}{\Delta t} \rho(x|x',\Delta t) dx' |_{\Delta t\to 0} = A(x),$$

$$\frac{\langle (x'-x)^2 \rangle}{\Delta t} |_{\Delta t\to 0} = \int \frac{(x'-x)^2}{\Delta t} \rho(x|x',\Delta t) dx' |_{\Delta t\to 0} = B(x), \quad (154)$$

$$\frac{\langle (x'-x)^k \rangle}{\Delta t} |_{\Delta t\to 0} = \int \frac{(x'-x)^k}{\Delta t} \rho(x|x',\Delta t) dx' |_{\Delta t\to 0} = 0, \quad k \ge 3,$$

kde $A(x) = (-\partial U/\partial x)/\gamma$ a $B(x) = 2kT/\gamma$.

Nech H(x) je dostatočne hladká funkcia, pre ktorú existuje stredná hodnota

$$\mathcal{H}(t) = \int H(x)\rho(x_0|x,t)\,\mathrm{d}x\,.$$

Nájdeme časovú deriváciu $\mathcal{H}(t)$

$$\begin{aligned} \frac{\partial \mathcal{H}(t)}{\partial t} &= \int \, \mathrm{d}x' H(x') \frac{\partial \rho(x_0 | x', t)}{\partial t} = \\ &= \int \, \mathrm{d}x' H(x') \frac{\rho(x_0 | x', t + \Delta t) - \rho(x_0 | x', t)}{\Delta t} \mid_{\Delta t \to 0} \, . \end{aligned}$$

Domovská stránka
Titulná strana
Obsah
∢ →
• •
Strana 285 z 348
Späť
Celá strana
Zatvoriť
Koniec

Použitím CHKS rovnice (153) upravíme poslednú rovnicu do tvaru

$$\frac{\partial \mathcal{H}(t)}{\partial t} = \int \mathrm{d}x \int \mathrm{d}x' \rho(x_0|x,t) H(x') \frac{\rho(x|x',\Delta t) - \rho(x|x',0)}{\Delta t} \mid_{\Delta t \to 0} .$$
 (155)

Rozložíme funkciu H(x') do Taylorovho radu v okolí bodu *x*:

$$\frac{\partial \mathcal{H}(t)}{\partial t} = \int \mathrm{d}x \,\rho(x_0|x,t) \int \mathrm{d}x' \left(H(x) + (x'-x)H'(x) + \frac{(x'-x)^2}{2}H''(x) + \dots\right) \frac{\rho(x|x',\Delta t) - \rho(x|x',0)}{\Delta t} \mid_{\Delta t \to 0}.$$
(156)

Keďže podľa (150)

$$\int \rho(x|x',0) \mathrm{d}x' = \int \rho(x|x',\Delta t) \mathrm{d}x' = 1,$$

členy úmerné H(x) sa krátia, a keďže vďaka počiatočnej podmienke (150)

$$\int (x'-x)^k \rho(x|x',0) dx' = \int (x'-x)^k \delta(x-x') dx' = 0, \ k \ge 1,$$

tak aj členy s $\rho(x|x', 0)$ sa nulujú. Zostávajúce členy majú tvar

$$(x'-x)^k \rho(x|x',\Delta t)/\Delta t$$

a vďaka požiadavkam (154) dávajú po preintegrovaní pre k = 1 a k = 2 veličiny A(x) a B(x) a pre $k \ge 3$ sa nulujú. Po týchto zjednodušeniach

Domovská stránka Titulná strana Obsah •• Strana 286 z 348 Späť Celá strana Zatvoriť Koniec

posledná rovnica nadobudne tvar:

$$\int \mathrm{d}x H(x) \frac{\partial \rho}{\partial t} = \int \mathrm{d}x \left(\rho A H' + \rho B H''/2 \right), \qquad (157)$$

kde pre jednoduchosť sme označili $\rho(x_0|x,t) = \rho$. Prvý člen v pravej časti tejto rovnice preintegrujeme per partes jedenkrát a druhý člen dvakrát, aby sme derivácie po *x* z funkcie *H*(*x*) preniesli na ρA a ρB . Zároveň využijeme prirodzené hraničné podmienky na ρ :

$$ho\mid_{x\to\pm\infty}=0$$
, $ho'\mid_{x\to\pm\infty}=0$

V dôsledku týchto požiadaviek

$$\rho AH' \longrightarrow -H \frac{\partial}{\partial x}(\rho A), \quad \rho BH'' \longrightarrow -H' \frac{\partial}{\partial x}(\rho B) \longrightarrow H \frac{\partial^2}{\partial x^2}(\rho B).$$

Prenesením všetkých členov rovnice (157) na ľavú stranu dostávame

$$\int \mathrm{d}x H(x) \left\{ \frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x} (A\rho) - \frac{\partial^2}{\partial x^2} (B\rho/2) \right\} = 0.$$
 (158)

Keďže funkcia je ľubovoľná, integrál bude rovný nule len ak zároveň výraz v zátvorke bude rovný nule:

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x} (A\rho) - \frac{\partial^2}{\partial x^2} (B\rho/2) = 0.$$
 (159)

Substitúciou $A(x) = -(\partial U/\partial x)/\gamma$, $B(x) = 2kT/\gamma$ dostávame rovnicu

$$\frac{\partial \rho}{\partial t} = \frac{kT}{\gamma} \frac{\partial^2 \rho}{\partial x^2} + \frac{1}{\gamma} \frac{\partial}{\partial x} \left(\rho \frac{\partial U}{\partial x} \right) \,. \tag{160}$$

Táto rovnica je známa pod názvom *Fokkerova-Planckova rovnica*. Je to lineárna diferenciálna rovnica parabolického typu a ľahko sa zovšeobecňuje na trojrozmerný prípad. Pri zadanej počiatočnej podmienke $\rho(x_0|x,0) = \delta(x - x_0)$ a príslušných hraničných podmienkach má jediné riešenie.

8.3.2. Riešenie Fokkerovej-Planckovej rovnice

Uvažujme Fokkerovu-Planckovu rovnicu v prípade nulového vonkajšieho poľa U = 0 pre brownovskú časticu, ktorá sa na začiatku nachádzala v bode x = 0 s normovacou podmienkou (150) a s nulovými hraničnými podmienkami, ktoré odzrkadľujú fakt, že v nekonečne sa nenachádzajú žiadne častice:

$$\frac{\partial \rho}{\partial t} = \frac{kT}{\gamma} \frac{\partial^2 \rho}{\partial x^2}, \qquad \rho(0, x) = \delta(x),$$
$$\int_{-\infty}^{+\infty} dx \, \rho(t, x) = 1, \quad \rho \mid_{x \to \pm \infty} = 0, \quad \frac{\partial \rho}{\partial x} \mid_{x \to \pm \infty} = 0.$$
(161)

Prechodom k Fourierovej reprezentácii pomocou inverznej Fourierovej transformácie (pozri vzťah (98) v oddieli 7.6)

$$\rho(t,x) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \mathrm{d}p \,\rho_p(t) \mathrm{e}^{ipx} \tag{162}$$

sa dostávame k elementárnej matematickej úlohe pre obraz ρ_p :

$$\frac{\partial \rho_p}{\partial t} = -\frac{kT}{\gamma} p^2, \quad \rho_p(0) = 1.$$
(163)

Preintegrovaním po *t* nájdeme riešenie $\rho_p(t) = \exp[(-kT/\gamma)p^2t]$. Inverznou Fourierovou transformáciou (162) použitím známeho vzorca určíme hľadané riešenie v tvare

$$\rho(t,x) = \frac{1}{\sqrt{4\pi(kT/\gamma)t}} e^{-\frac{x^2}{(4kT/\Gamma)t}}.$$
(164)

Keďže funkcia $\rho(t, x)$ je párna vzhľadom na premennú x, je zrejmé, že nepárne korelácie $\langle x^{2n+1} \rangle$ sú rovné nule a pre párne korelácie platí (použijeme zjednodušené označenie $\alpha \equiv [(4kT/\gamma)t]^{-1}$):

$$\langle x^{2n}(t) \rangle = \sqrt{\frac{\alpha}{\pi}} \int_{-\infty}^{+\infty} x^{2n} \mathrm{e}^{-\alpha x^2} \, \mathrm{d}x = (-1)^n \sqrt{\frac{\alpha}{\pi}} \frac{\partial^n}{\partial \alpha^n} \int_{-\infty}^{+\infty} \mathrm{e}^{-\alpha x^2} \, \mathrm{d}x =$$
$$= (-1)^n \sqrt{\frac{\alpha}{\pi}} \frac{\partial^n}{\partial \alpha^n} \sqrt{\frac{\pi}{\alpha}} = (-1)^{n+1} \frac{(2n-1)!!}{2^n} \, \alpha^{-n} =$$
$$= (-1)^{n+1} (2n-1)!! \left[\frac{2kT}{\gamma} t \right]^n = (-1)^{n+1} (2n-1)!! \left[\langle x^2(t) \rangle \right]^n.$$

Pre stredne kvadratickú odchýlku (n = 1) dostávame Einsteinov vzťah $\langle x^2(t) \rangle = 2(kT/\gamma)t$. Pre vyššie korelácie máme:

$$\langle x^3(t) \rangle = 0, \qquad \langle x^4(t) \rangle = 12 \left(\frac{kT}{\gamma}\right)^2 t^2$$

a tak d'alej. Vidíme, že $\langle x^k(t) \rangle |_{t\to 0} = 0$ pre $k \ge 3$, a teda $\rho(t, x)$ skutočne patrí do množiny funkcií s požadovanými vlastnosťami. (9!! = $9 \cdot 7 \cdot 5 \cdot 3 \cdot 1$ a pod.)

Na ilustráciu je hustota pravdepodobnosti $\rho(t, x)$ znázornená na obrázku 89 ako funkcia súradnice x pre za sebou nasledujúce časové okamihy $t_1 < t_2 < t_3$.

8.4. Záver

Hustota pravdepodobnosti $\rho(t, x)$, ktorá je riešením Fokkerovej-Planckovej rovnice popisuje pohyb brownovskej častice na makroskopickej časovej škále $t \gg 1/\Gamma$. Pre tieto časové intervaly sa náhodný pohyb brownovskej častice stáva difúznym procesom — hustotu pravdepodobnosti $\rho(t, x)$ môžeme interpretovať ako koncentráciu brownovských častíc. Teda Fokkerova-Planckova rovnica (161) je v skutočnosti príkladom jednoduchej difúznej rovnice s koeficientom difúzie rovným $\frac{kT}{r}$.

Pohyb častice je v tomto prípade "nezotrvačný" — častica stráca pamäť o svojej počiatočnej rýchlosti. Aktuálny stav častice v ľubovolnom čase t_0 je určený len súradnicou $x(t_0)$, ktorú vždy možno považovať za nový počiatočný stav x_0 , počnúc ktorým sa začína znova rovnaký difúzny proces (časový argument sa posunie o t_0) bez akéhokoľvek vzťahu k predchádza-júcemu vývoju.

Poznámka 8.6. Takéto procesy sa volajú markovovské a dynamika bro-

Koniec

wnovských častíc, resp. dynamika podobných systémov už môže byť popísaná len štatisticky, resp. v rámci pravdepodobnostného prístupu. Ďalšie zaujímavé podrobnosti a prístupy už vychádzajú za rámec tejto učebnice. Zvedavému a pripravenému čitateľovi môžeme odporučiť na ďalšie štúdium knihy (GARDINER, 1985; KLIMONTOVICH, 1991).

Matematika — to je umenie vyhýbať sa výpočtom.

R. Macmillan.

9. Programová príloha

V tejto časti stručne popíšeme princípy programov, ktoré sme použili na výrobu obrázkov a uvedieme ich texty v jazyku MATLAB. Čitateľ ich môže použiť na experimentovanie v tejto zaujímavej oblasti a pritom sa tiež môže naučiť nejaké nové príkazy. Programy nie sú optimalizované, sú výsledkom skôr niekoľkominútových ako niekoľkodňových úvah. Znak % uvádza komentár.

9.1. Rungeho-Kuttova metóda

Rungeho-Kuttova metóda riešenia Cauchyho úlohy pre sústavu diferenciálnych rovníc prvého rádu je popísaná prakticky v každej učebnici numerickej matematiky, napríklad v skriptách (PIRČ a BUŠA, 2002).

```
t0=input(' t0: ');
t1=input(' t1: ');
nk=input(' pocet krokov: ');
x=input(' zaciatocny vektor: ');
```



```
t=t0:
n=length(x);
v(1,1)=t;
v(1,2:(n+1))=x':
index=1;
h=(t1-t0)/nk;
for k=1:nk,
  x=krok(t,x,h);
  t=t+h;
  if mod(k,1)==0,% nemusime si pamatat vsetko
     index=index+1;
    v(index,1)=t;
     v(index,2:(n+1))=x';
   end;
end:
subplot(2,1,1); plot(v(:,1),v(:,2));
subplot(2,1,2); plot(v(:,1),3*cos(v(:,1)/5));
hold on; plot([t0 t1],[2 2],'r',[t0 t1],[-2 -2],'r');
%plot3(v(:,2),v(:,3),v(:,4)); % 3D plot v Lorenzovi
% zapis obrazkov do eps suboru
print skoky.eps -f1 -depsc2;
```

Hlavný program v skripte runge.m načíta vstupné údaje — začiatočný a konečný čas, počet delení časového intervalu a začiatočný vektor (stĺpec). Podprogram krok.m realizuje výpočet približnej hodnoty vektora x v novom časovom okamihu t. Hodnoty t a x sa ukladajú do matice v (môžete

využiť funkciu mod a zapisovať len každú druhú hodnotu a pod.) a potom sa naraz vykresľujú. Príkazy subplot umožňujú do jedného obrázku umiestniť viac grafov. Na záver si príkazom print zapamätáme obrázok napríklad vo formáte ENCAPSULATED POSTSCRIPT. Príkaz help print Vám pomôže lepšie spoznať funkciu print.

```
function [y]=krok(t,x,h)
k1=h*fun(t,x);
k2=h*fun(t+h/2,x+k1/2);
k3=h*fun(t+h/2,x+k2/2);
k4=h*fun(t+h,x+k3);
y=x+(k1+2*(k2+k3)+k4)/6;
```

Funkcia krok.m zabezpečuje realizáciu samotnej Rungeho-Kuttovej metódy. Ak vymeníte pár riadkov, získate inú metódu (napr. Eulerovu, Heunovu) bez toho, aby ste zmenili hlavný program.


```
% Lorenzov atraktor %
% sigma=10;
% r=30; % 5 10 25
% b=8/3:
                 % x0=[1;0;20]
% Van der Pol %
%a=1; b=1; c=1;
%fun=[x(2); b*(1-c*x(1)^2)*x(2)-a*x(1)];
% Duffing %
%a=1;b=0.25;c=0.3;d=1; % c=0.1 x0=[1.1;0]
fun=[x(2); c*cos(d*t)-b*x(2)+a*x(1)-x(1)^3];
% Skoky pri bifurkaciach: meni sa "parameter" p=3*cos(t) %
fun=3*x(1)-x(1)^3+3*cos(t/5);
```

Funkcia fun.m je volaná v procedúre krok. Definuje sústavu, ktorú riešime. Stĺpcový vektor fun pozostáva z pravých strán diferenciálnej sústavy, neznáme premenné indexujeme a zapisujeme ich do jedneho vektora *x*. Odkomentovaním a súčasným zakomentovaním zmeníme sústavu. Niekedy je potrebné modifikovať hlavný program, aby sme vykreslili, čo nás zaujíma.

9.2. Bifurkačný diagram spolu s Ljapunovovym exponentom

Bifurkačný diagram má znázorniť vznik stabilných dvoj-, štvor-, atď. periód pri zmene parametra. Pri každej hodnote parametra, ktorú počítame s nejakým krokom na danom intervale, najprv necháme prejsť určitý počet iterácií a potom vykresľujeme hodnoty. Ak sme už blízko cyklu, prakticky vidíme len stacionárne body (vďaka nepresnosti grafiky a našej neschopnosti vidieť malé rozdiely).

```
clear all;
global r;
rmin=input('Minimalne r: ');
rmax=input('Maximalne r: ');
nr=input('Pocet deleni <rmin,rmax>: ');
nmin=input('Po kolkych iteraciach zakreslujeme? ');
nzap=input('Kolko hodnot zakreslujeme? ');
perioda=input('S akou periodou? ');
posun=input('Kolku vetvu zdola? ');
subplot(2,1,1);
hold on;
for i=1:(nr+1),
  ljap=0;
  r=rmin+(i-1)*(rmax-rmin)/nr;
  vr(i)=r;
  x=sqrt(2)/13;
  for j=1:nmin,
```



```
ljap=ljap+log(abs(fd(x)));
    x=f(x);
end;
l(i)=ljap/nmin;
while x<f(x),
    x=f(x);
end;
for j=1:nzap,
    x=f(x);
    if mod(j-posun,perioda)==0, plot(r,x,'.'); end;
end;
end;
subplot(2,1,2);
plot(vr,1,'.');
print bifurkacie.eps -f1 -depsc2;
```

Hlavný program bifurkacie.m teda určí potrebné údaje. Funkcia mod v tomto prípade umožňuje odchytiť žiadanú vetvu. Program počíta aj *exponent Ljapunova*. Nižšie sú uvedené funkcie a derivácia. V súbore f.m je možné vidieť, ako sa definuje funkcia, ktorá pri vstupnom vektore vráti vektor funkčných hodnôt rovnakej dĺžky (počíta hodnoty po zložkách). Pravda v tomto konkrétnom prípade je táto funkcia zbytočná.

```
function [f]=f(x)
global r;
for i=1:length(x),
    %pom=2*x; if (pom>=1), f(i)=pom-1; else f(i)=pom; end;
```



```
%f(i)=mod(3*x(i),1);
%f(i)=mod(2*x(i),1);
%f(i)=r*(1-2*abs(1/2-x(i)));
%f(i)=-x(i)*2+1.4;
%f(i)=x(i)/2+0.4;
f(i)=r*x(i)*(1-x(i));
%f(i)=r*(x(i)*(1-x(i)))^2;
%f=r*(1-abs(2*x-1));
%f=r*sin(pi*x);
end;
```

```
function [fd]=fd(x)
global r;
fd=r*(1-2*x);
```

9.3. Zobrazenie jednorozmerných iterácií

Tento program iterplot.m názorne ukazuje konvergenciu alebo divergenciu jednorozmerného iteračného procesu $x_{n+1} = f(x_n)$. Snáď jediná zaujímavosť spočíva v použití príkazu global, ktorý slúži na odovzdanie hodnoty r do funkcie f.m. Šípka, naznačujúca smer iterácií bola dodávaná "ručne".

global r; r=input('r: ');

Domovská stránka
Titulná strana
Obsah
•• >>
• •
Strana 299 z 348
Späť
Celá strana
Zatvoriť
Koniec

```
a=input('a: ');
b=input('b: ');
x=input('x0: ');
y=f(x);
hold on;
plot([a,b],[a,b],'--');
axis([a,b,a,b]);
xx=a:(b-a)/50:b;
plot(xx,f(xx),'r');
plot([x,x],[0,y],'-.');
plot([x,y],[y,y]);
ni=input('Pocet iteracii: ');
ns=round(ni/2)-1:
for k=1:ni,
   x=y; y=f(x);
   plot([x,x],[x,y]);
   plot([x,y],[y,y]);
   if k==ns,
      uhol=input('Uhol: ');
     % sipka([x+0.6*(y-x),y],uhol,0.025);
   end;
end;
clear x y;
function sipka(x,alpha,d)
beta=15;
hold on;
fill([x(1)-d*cos((alpha-beta)/180*pi),x(1),...
      x(1)-d*cos((alpha+beta)/180*pi),...
```

Domovská stránka
Titulná strana
Obsah
•• >>
• •
Strana 300 z 348
Späť
Celá strana
Zatvoriť
Koniec

```
x(1)-d*cos((alpha-beta)/180*pi)],...
[x(2)-d*sin((alpha-beta)/180*pi),x(2),...
x(2)-d*sin((alpha+beta)/180*pi),...
x(2)-d*sin((alpha-beta)/180*pi)],'b');
```

9.4. Náhodný algoritmus SIF (systému iterovaných funkcií)

Tento program slúži na generovanie fraktálov metódou SIF. Je neuveriteľné, čo všetko sa dá dosiahnuť takýmito jednoduchými prostriedkami. Zaujímavosťou je snáď použitie trojrozmerného poľa atm (affine transform matrices) na spoločné uchovanie všetkých zobrazení Hutchinsonovho zobrazenia. V hlavnom programe sa najkôr volá funkcia defatm.m, ktorej úloha spočíva vo výbere SIF, ktorý dosiahneme zakomentovaním a odkomentovaním riadkov v súbore defatm.m. Ďalej sa už len iteruje, pričom v každom kroku sa použije náhodne jedna z transformácií — to zariadi funkcia rat.m, momentálne nastavená na rovnaké pravdepodobnosti.

```
% Randomized system of iterated functions
clear all;
defatm;
np=input(' Points number: ');
x=input(' Starting point: ');
plot(x(1),x(2),'.'); hold on;
for k=1:np,
```



```
x=rat(x);
plot(x(1),x(2),'.g');
end;
print stromcek.eps -f1 -depsc2;
```

```
function [vector]=rat(x)
% Randomed affine transform
% Compute next point by affine transform
% with random choice of transformation
% atm - Affine transforms matrix
% m - number of transformations
global atm;
v=[x;1];
m=size(atm,3);
v=atm(:,:,random('unid',m))*v;
vector=v(1:2,1);
```


%%%%%%%%%%%%%% % Strom % %%%%%%%%%%%% ['Strom'], atm(:,:,1)=[0.195 -0.488 0.4431; 0.344 0.443 0.2452; 0 0 1]; atm(:,:,2)=[0.462 0.414 0.2511; -0.252 0.361 0.5692; 0 0 1]; atm(:,:,3)=[-0.058 -0.07 0.5976; 0.453 -0.111 0.0969; 0 0 1]; $atm(:.:,4) = [-0.035 \ 0.07 \ 0.4884; -0.469 \ 0.022 \ 0.5069; \ 0 \ 0 \ 1];$ atm(:,:,5)=[-0.637 0 0.8562; 0 0.501 0.2513; 0 0 1]; % Sierpinski % %['Sierpinski'], %atm(:,:,1)=[0.5 0 0; 0 0.5 0; 0 0 1]; $%atm(:,:,2) = [0.5 \ 0 \ 0.5; \ 0 \ 0.5 \ 0; \ 0 \ 0 \ 1];$ %atm(:,:,3)=[0.5 0 0.25; 0 0.5 0.433; 0 0 1]; %%%%%%%%%%% % List % %%%%%%%%%% %['List'], %atm(:,:,1)=[0.4 -0.3733 0.3533; 0.06 0.6 0; 0 0 1]; %atm(:,:,2)=[-0.8 -0.1867 1.1; 0.1371 0.8 0.1; 0 0 1]; % Krystal % %%%%%%%%%%%%% %['Krystal'], %atm(:,:,1)=[0.255 0 0.3726; 0 0.255 0.6714; 0 0 1]; %atm(:,:,2)=[0.255 0 0.1146; 0 0.255 0.2232; 0 0 1]; %atm(:.:,3)=[0.255 0 0.6306: 0 0.255 0.2232: 0 0 1]:

%atm(:,:,4)=[0.37 -0.642 0.6356; 0.642 0.37 -0.0061; 0 0 1]; %%%%%%%% % Moje % %%%%%%%% %['Moje'], %atm(:,:,1)=[0.5 0.5 0.25; -0.5 0.5 0; 0 0 1]; %atm(:,:,2)=[0.3 0.3 0.35; -0.3 0.3 0.5; 0 0 1]; %atm(:,:,3)=[0.5 -0.5 0.75; 0.5 0.5 0; 0 0 1]; %atm(:,:,4)=[0.3 -0.3 0.65; 0.3 0.3 0.5; 0 0 1];

9.5. Implementácia turtle-grafiky v L-systémoch

Aj v tomto prípade je hlavný program turtle.m dosť jednoduchý. Najprv sa volá funkcia tinit.m, pretože je lepšie uchovávať rôzne *L*-systémy (axiómy a pravidlá) mimo hlavného programu. Táto funkcia, uvedená nižšie, definuje, ktorý *L*-systém použijeme. Ďalej, keď sme sa rozhodli, do akej hĺbky začrieme, sa niekoľkonásobne aplikujú pravidlá k aktuálnemu slovu. Je možné po každej iterácii zavolať korytnačku funkciou tplot, aby vykreslila aktuálny stav (my sme to používali až na záver).

```
% Turtle graphic language for prefractal
% definition by formal languages approach
%
tinit;
ni=input(' Iterations number: ');
for k=1:ni,
```



```
axiom=aplyrules(axiom);
subplot(3,1,k);
tplot(axiom,l,angle);
end;
axis equal;
print retaz.eps -f1 -depsc2;
```

V nasledujúcom skripte tinit.m sa zvolí žiadaný *L*-systém (odkomentovaním a zakomentovaním vhodných riadkov). Na konci sa vypočítajú dĺžky substituovaných slov, ktoré bude používať funkcia aplyrules.m.

```
global ruleL 1L ruleX 1X ruleY 1Y ruleS 1S cangle;
1=1;
%%%%%%%%%%%
% Peano %
%%%%%%%%%%%
%['Peanova krivka']
%axiom=['L'];
%ruleL=['L' 'M' 'L' 'P' 'L' 'P' 'L' 'P' 'L' ...
%
        'M' 'L' 'M' 'L' 'M' 'L' 'P' 'L']:
%ruleX=[];
%ruleY=[];
%ruleS=[];
%angle=pi/2;
%cangle=pi/4;
%%%%%%%%%%
% Koch %
%%%%%%%%%
```



```
ruleY=[];
ruleS=['S' 'S' 'S'];
angle=pi/2;
cangle=pi/4;
%%%%%%%%%
% Krik %
%%%%%%%%%%
%['Krik']
%axiom=['L']:
%ruleL=['M' 'L' 'P' 'L' 'P' '0' 'P' 'L' 'M' 'L' 'M' 'C' ...
        'M' 'O' 'M' 'L' 'P' 'L' 'P' 'L' 'C']:
%ruleX=[]:
%ruleY=[]:
%ruleS=[];
%angle=pi/8;
%cangle=0;
lL=max(size(ruleL)); % length of L - rule
lX=max(size(ruleX)); % length of X - rule
IY=max(size(ruleY)); % length of Y - rule
lS=max(size(ruleS)); % length of S - rule
```

Funkcia aplyrules zabezpečí, že v aktuálnom slove *L*-jazyka sa všetky znaky nahradia podľa daných substitučných pravidiel. Postup je jednoduchý — do nového vektora znakov sa postupne od začiatku dopisujú vždy na koniec "substituenty" (samozrejme, využívame tu vektorovosť MATLABu).

```
function [newword]=aplyrules(word)
```



```
% This function applies the rules
% of word iterations
global ruleL ruleX ruleY ruleS 1L 1X 1Y 1S;
newword=[]; nwl=0; % initialization of the newword and its actual length
lw=length(word);
for kk=1:lw,
   if word(kk)=='L', % application of newL
      newword(nwl+1:nwl+lL)=ruleL;
      nwl=nwl+lL:
   elseif word(kk)=='X', % application of newX
      newword(nwl+1:nwl+lX)=ruleX;
      nwl=nwl+lX:
   elseif word(kk)=='Y', % application of newY
      newword(nwl+1:nwl+lY)=ruleY;
      nwl=nwl+lY:
   elseif word(kk)=='S', % application of newY
      newword(nwl+1:nwl+lS)=ruleS;
      nwl=nwl+lS;
   else % only rewrite from word into newword
      newword(nwl+1)=word(kk);
      nwl=nwl+1;
   end;
end;
```

Funkcia tplot.m interpretuje *turtle*-grafiku na zadanom slove. V súlade s načítaným znakom buď kreslí alebo sa posúva, či otáča. Ako spracúva "vetvenia", radšej nebudeme vysvetľovať, to by si mal každý zažiť sám. function [tp]=tplot(word,1,angle);


```
% This function plots a word written
% in turtle graphics language
global cangle;
point=[0,0];
indo=0;maxindc=0;
plot(point(1),point(2),'.'); hold on;
for k=1:length(word),
   if word(k)=='L', % plotting line
     plot([point(1) point(1)+l*cos(cangle)],...
         [point(2) point(2)+l*sin(cangle)]);
     point(1)=point(1)+l*cos(cangle);
     point(2)=point(2)+l*sin(cangle);
   elseif word(k)=='X', % ignore
     k=k;
    % plotting line
    % plot([point(1) point(1)+l*cos(cangle)],...
    % [point(2) point(2)+l*sin(cangle)]);
    % point(1)=point(1)+l*cos(cangle);
    % point(2)=point(2)+l*sin(cangle);
   elseif word(k)=='Y', % ignore
     k=k;
    % plotting line
    % plot([point(1) point(1)+l*cos(cangle)],...
     % [point(2) point(2)+l*sin(cangle)]);
    % point(1)=point(1)+l*cos(cangle);
    % point(2)=point(2)+l*sin(cangle);
   elseif word(k)=='S', % skip to the new position
     point(1)=point(1)+l*cos(cangle);
     point(2)=point(2)+l*sin(cangle);
```

Domovská stránka
Titulná strana
Obsah
(1)
Strana 309 z 348
Späť
Celá strana
Zatvoriť
Koniec

```
elseif word(k)=='P', % increase cangle by angle
      cangle=cangle+angle;
   elseif word(k)=='M', % decrease cangle by angle
      cangle=cangle-angle;
   elseif word(k)=='0', % open branch bracket [
      indo=indo+1;
      state(indo,:)=[point(1),point(2),cangle];
      maxindc=maxindc+1;
      auxindc(maxindc)=indo;
   elseif word(k)=='C', % close branch bracket ]
      point(1)=state(maxindc,1);
      point(2)=state(maxindc,2);
      cangle=state(maxindc,3);
      maxindc=maxindc-1;
   end;
end;
tp=1;
```

9.6. Znázorňovanie Juliovych množín

Na podrobné štúdium znázorňovania Juliovych množín sme nemali dosť času. Tomu zodpovedá výsledok, ktorý tu prezentujeme. Využívame stredovú súmernosť Juliovych množín. Vidíme, že to, čo bude nakreslené, nie je Juliova množina (a dokonca ani zaplnená Juliova množina) — je to len jej *znázornenie*, ako hovorí názov tohoto oddielu. Vychádzame z toho, že v blízkosti bodov Juliovej množiny by mali body *veľmi neochotne divergovať* a práve tieto *lenivé* body, ktorých trajektórie ani po 200 (skúste počet meniť)

iteráciách neprekročia hranicu, zpoza ktorej už niet návratu, vykresľujeme. "Lenivost" overujeme pre každý bod zvolenej sietky.

```
% Drawing the image of Julia set
% J_c = {z_0: lim inf |z_n| < infinity} if
\[ \] z_{n+1} = z_n^2 + c \] \]
maxr=input('Maximum of real part of z0: ');
maxi=input('Maximum of imaginary part of z0: ');
mini=-maxi;
c=input('c: ');
nr=input('nr: ');
ni=input('ni: ');
%
% If |x_n| > |c| + 2, then z_n \rightarrow  infinity
%
figure(1);hold on;
for jj=1:(nr+1),
   for ii=1:(ni+1),
      iter=0:
      z0=(jj-1)*maxr/nr+i*(mini+(ii-1)*(maxi-mini)/ni);
      z=z0;
      for k=1:200,
         iter=iter+1;
         z=z^2+c;
         if (abs(z)>abs(c)+2),
            break;
         end;
      end;
      if k==200,
```



```
plot(z0,'r');
plot(-z0,'r');
end;
end;
end;
axis([-maxr maxr -maxi maxi]);
print julia.eps -f1 -depsc2;
```

9.7. Znázorňovanie výrezov Mandelbrotovej množiny

Princíp je podobný, ako pri znázorňovaní Juliovej množiny. Navrhnuté rozdelenie farieb podľa rýchlosti divergencie vôbec nie je dokonalé, odpovedá času, ktorý sme tomuto programu venovali. Navyše aj preto, že MATLAB je interpretátor, nemá zmysel súťažiť s kvalitnejšími a navyše rýchlejšími programami.

```
% Drawing the image of Mandelbrot set
% M = {c: lim inf |z_n|< infinity} if
% z_{n+1}=z_n^2 + c and z_0=0
%
minr=input('Minimum of real part of c: ');
maxr=input('Maximum of real part of c: ');
mini=input('Minimum of imaginary part of c: ');
maxi=input('Maximum of imaginary part of c: ');
nr=input('nr: ');
ni=input('ni: ');
```



```
%
% If |x_n| > |c| + 2, then z_n \longrightarrow  infinity
%
figure(1);hold on;
for jj=1:(nr+1),
   for ii=1:(ni+1),
      iter=0;
      c=(minr+(jj-1)*(maxr-minr)/nr)+i*(mini+(ii-1)*(maxi-mini)/ni);
      z=0;
      for k=1:300,
         iter=iter+1;
         z=z^2+c;
         if (abs(z)>abs(c)+2),
             if iter < 8,
                iter=iter;
              % plot(c,'.y');
             elseif iter < 20,
               plot(c,'.g');
             elseif iter < 30,
               plot(c,'.c');
             elseif iter < 40,
               plot(c,'.b');
             elseif iter < 50,
                plot(c,'.r');
             else
                plot(c,'.m');
             end
             break;
         end
```



```
end;
end;
end;
```

9.8. Využitie rekurzie na znázornenie Kochovej vločky

Viaceré obrázky tejto učebnej pomôcky boli vytvorené v METAPOSTe, jazyku, ktorý pôvodne navrhol D.E. Knuth ako METAFONT, a ktorý doplnil J.D. Hobby o ďalšie črty, vrátane výstupu do PostScriptu. Rekurzívnu definíciu makra na vytvorenie *Kochovej krivky* uviedli v Zpravodaji CSTUG 1/98 P. Šedivý a kol. Rekurziu asi tiež môžeme priradiť ku formálnym jazykom (aspoň medzi nami).

```
% Kochova vlocka
beginfig(13);
path p[];
def spoj (expr n,a,f)=
if n>0:begingroup
    save b,c,e;
    pair b,c,e;
    b=1/3[a,f];
    e=2/3[a,f];
    c=a rotatedaround (b,-120);
    spoj(n-1,a,b);
    spoj(n-1,b,c);
```



```
spoj(n-1,c,e);
spoj(n-1,e,f);
endgroup;
else: draw a--f;
fi;
enddef;
```

```
pickup pencircle scaled 0.1;
z1=(0,60); z2=(60,60); z3=(0,0); z4=(60,0);
for k=1 upto 4:
    spoj(k,z[k]+(40,0),z[k]+(0,0));
    spoj(k,z[k]+(0,0),z[k]+40*dir60);
    spoj(k,z[k]+40*dir60,z[k]+(40,0));
endfor;
endfig;
```

9.9. Určenie a znázornenie autokorelačnej funkcie

Na obrázkoch 42 a 43 sú znázornené autokorelačné funkcie, počítané dvoma rôznymi spôsobmi. Nasledujúce funkcie realizujú výpočet a vy-kreslenie autokorelačných funkcií pre vstupný vektor x.

```
function [ace,acm]=powercor(dt,x)
% Determnination of autokorelation function
% using the signal's x power spectrum
```

Domovská stránka
Titulná strana
Obsah
Strana 315 z 348
Späť
Celá strana
Zatvoriť
Koniec

```
acm=autokorel(x);
nx=length(x)-1;
np=floor(length(x)/2);
t=(0:np-2)*dt;
plot(t,acm(1:np-1)); hold on;
ex=sum(x)/(nx+1);
xe=x-ex;
s=fft(xe);
ace=ifft(abs(s).^2);
plot(t,real(ace(1:np-1))/(nx+1),'r');
function [C]=autokorel(x)
%
        1
               N/2-1
% C_m(x) = --- SUM
                          ^x_{i+m} * ^x_i
%
       N/2 i=0
%
%
                          1
                                N-1
% ^x_i=x_i - Ex, Ex = --- SUM
                                    x_i
%
                         Ν
                                i=0
%
N=length(x); K=floor(N/2);
Ex=sum(x)/N; % Avarage value for x
Hx=x-Ex; % Shifted value ^x
for i=0:(K-1),
   s=0;
   for j=1:K,
      s=s+Hx(j)*Hx(j+i);
   end;
   C(i+1)=s/K;
end;
```

Domovská stránka
Titulná strana
Obsah
< →
Strana 316 z 348
Späť
Celá strana
Zatvoriť
Koniec

9.10. Určovanie korelačnej dimenzie nameraného signálu

Nasledujúci program je určený na porovnanie korelačných dimenzií pri rôznych dimenziách vnorenia. Rungeho-Kuttovou metódou sa rieši diferenciálny systém, pričom v matici L sa zaznamenávajú hodnoty stavových premenných s určitým krokom Δt . Najprv sa počíta korelačná dimenzia vo fázovom priestore, potom sa metódou časových oneskorení počítajú dimenzie pre premennú *x* pri rôznych dimenziách vnorení. Program zobrazí výsledky, znázornené na obrázkoch 47 a 48.

```
clear all;
Eps=input('Vektor hodnot epsilon: ');
A=[sum(log10(Eps).*log10(Eps)),sum(log10(Eps)); ...
sum(log10(Eps)),length(Eps)];
xv=input('Zaciatocny vektor: ');
L(:,1)=xv; nk=input('Pocet krokov (h=0.01): ');
h=0.01; t=0; counter=1;
for kk=1:nk,
    xv=krok(t,xv,h);
    t=t+h;
    if (mod(kk,113)==0),
        counter=counter+1;
        L(:,counter)=xv;
    end
end;
```



```
x=L(1,:);
y=L(2,:);
z=L(3,:);
% korelacna dimenzia vo fazovom priestore
ks=korel_suc(L,Eps,2);
rs=[sum(log10(Eps).*log10(ks));sum(log10(ks))];
coef=pinv(A)*rs, % coef(1) je korelacna dimenzia
figure(2); hold on;
plot([1 4],[coef(1) coef(1)],'r');
N=size(L,2); NN=N-5;
for k=1:4, % 3 5
  Vx(k,1:NN)=x(k:NN+k-1);
  ks=korel_suc(Vx,Eps,2);
  figure(1); hold on;
  plot(log10(Eps),log10(ks),'o');
  rs=[sum(log10(Eps).*log10(ks));sum(log10(ks))];
   cx=pinv(A)*rs,
  \dim(1,k)=cx(1);
end:
figure(2); plot(1:5,dim(1,:),'o');
```

V programe sa používa funkcia na určenie korelačného súčtu

```
function [ks]=korel_suc(V,Eps,n)
% Urcenie korelacneho suctu vektorov tvoriacich
% stlpce matice V pre hodnoty epsilon, vymenovane
% vo vektore Eps s pouzitim n-normy vektorov
%
[M,N]=size(V); % rozmer vektorov a ich pocet
```

Domovská stránka
Titulná strana
Obsah
•• >>
• •
Strana 318 z 348
Späť
Celá strana
Zatvoriť
Koniec

```
sn=N*ones(size(Eps)); %sn=zeros(size(Eps));
for k=1:N-1,
    for kk=k+1:N,
        d=norm(V(:,k)-V(:,kk),n);
        for i=1:length(Eps),
            if (d<Eps(i)), sn(i)=sn(i)+2; end;
        end;
    end;
end;
ks=sn/(N*N); %ks=sn/(N*(N-1));</pre>
```

9.11. Premiešavanie pri Arnol'dovom zobrazení

Obrázok 50 bol vytvorený pomocou nasledujúceho programu:


```
c(i,j)=2;
         end;
      else
         c(i,j)=3;
      end;
   end;
end;
plotsquare;
k=input('Kolko iteracii? ');
for ik=1:k,
   for i=1:N,
      for j=1:N,
         d(i,j)=c(mod(i+j,N)+1,mod(i+2*j,N)+1);
      end;
   end;
   c=d;
   if (ik==1),
      figure; plotsquare;
   elseif (ik==4),
      figure; plotsquare;
   elseif (ik==15),
      figure; plotsquare;
   end;
end;
```

Súčasťou programu bola funkcia na vykreslenie aktuálneho stavu štvorca: global symbols colours;

Domovská stránka
Titulná strana
Obsah
•• ••
Strana 320 z 348
Späť
Celá strana
Zatvoriť
Koniec

```
hold on;
axis('equal'); axis('off');
for i=1:N,
    for j=1:N,
        plot((i-1)/N,(j-1)/N,[symbols(c(i,j)),colours(c(i,j))]);
    end;
end;
```

Orbitu – 1000 iterácií – jedného začiatočného bodu $(\sqrt{3}/3, \sqrt{2}/2)$ znázorníme programom:

```
figure(1); hold on; axis('equal'); axis([0 1 0 1]);
x=sqrt(3)/3; y=sqrt(2)/2; plot(x,y,'ro');
for i=1:1000,
    x=mod(x+y,1);
    y=mod(x+2*y,1);
    if (x==0 & y==0),
         i,
         break;
    end;
    plot(x,y,'*');
end;
```

Domovská stránka
Titulná strana
Obsah
< →
Strana 321 z 348
Späť
Celá strana
Zatvoriť
Koniec

10. Riešenia úloh

1.
$$Av = \lambda v \Rightarrow A^*v^* = \lambda^*v^* \Rightarrow Av^* = \lambda^*v^*$$
, pretože $A^* = A$.

2.
$$\dot{x} = Ax \Rightarrow \dot{x}^* = A^*x^* \Rightarrow \dot{x}^* = Ax^*$$
, pretože $A^* = A$.

3.
$$\dot{\mathbf{x}}(t) = \begin{bmatrix} 1\\-1 \end{bmatrix} e^{-2t} - 2 \left\{ t \begin{bmatrix} 1\\-1 \end{bmatrix} + \begin{bmatrix} -1\\0 \end{bmatrix} \right\} e^{-2t} = \begin{bmatrix} -2t+3\\2t-1 \end{bmatrix} e^{-2t}.$$
$$\mathbf{A}\mathbf{x} = \begin{bmatrix} -3&-1\\1&-1 \end{bmatrix} \begin{bmatrix} t-1\\-t \end{bmatrix} e^{-2t} = \begin{bmatrix} -3t+3+t\\t-1+t \end{bmatrix} e^{-2t} = \begin{bmatrix} -2t+3\\2t-1 \end{bmatrix} e^{-2t}.$$

4. Musí platiť b > 0. Hurwitzova matica je $\begin{bmatrix} a & b \\ 0 & 1 \end{bmatrix}$ a teda $\Delta_1 = a = \Delta_2 > 0$. Nutnou a postačujúcou podmienkou stability je teda a > 0 a b > 0.

5. Hurwitzova matica je
$$\begin{bmatrix} b & 1 & 0 & 0 \\ a & 4 & b & 1 \\ 0 & 1 & a & 4 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
, $\Delta_1 = b$, $\Delta_2 = 4b - a$ a $\Delta_3 = \Delta_4 = 4ab - a^2 - b^2$. Teda musí platit' $b > 0$ a $2 - \sqrt{3} < a/b < 2 + \sqrt{3}$.

Domovská stránka
Titulná strana
Obsah
• •
Strana 322 z 348
Späť
Celá strana
Zatvoriť
Kaniaa
Konlec

6. Z prvej rovnice stacionárneho bodu $\ln(1 - x_2 + x_2^2) = 0$ získavame $1 - x_2 + x_2^2 = 1$ a teda $x_2 = 0$ alebo $x_2 = 1$. Z druhej rovnice $3 - \sqrt{x_1^2 + 8x_2} = 0$ dostaneme pre $x_2 = 0$ riešenia $x_1 = \pm 3$, pre riešenie $x_2 = 1$ dostaneme riešenia $x_1 = \pm 1$. Teda systém má 4 stacionárne body $(-3, 0)^T$, $(3, 0)^T$, $(-1, 1)^T$ a $(1, 1)^T$. Matica prvých derivácií má tvar

$$\begin{bmatrix} 0 & \frac{2x_2-1}{1-x_2+x_2^2} \\ \frac{-x_1}{\sqrt{x_1^2+8x_2}} & \frac{-4}{\sqrt{x_1^2+8x_2}} \end{bmatrix}, \text{ a teda } \boldsymbol{J} = \begin{bmatrix} 0 & 2x_2^*-1 \\ -x_1^*/3 & -4/3 \end{bmatrix}$$

a charakteristický polynóm matice **J** je $\lambda^2 + \frac{4}{3}\lambda + \frac{x_1^*}{3}(2x_2 - 1)$. Podmienkou stability je v tomto prípade kladnosť posledného koeficienta. Na základe vety o prvom priblížení sú teda stacionárne body $(1,1)^T$ a $(-3,0)^T$ stabilné, body $(-1,1)^T$ a $(3,0)^T$ sú nestabilné.

7. Najprv použijeme metódu prvého priblíženia. Pre Jacobiovu maticu dostávame charakteristický polynóm $\lambda^2 + 2\lambda - 3 - ab$. Pre ab < -3 je teda nulové riešenie systému asymptoticky stabilné, pre ab > -3 je nestabilné. Nejasná ostáva situácia na hyperbole ab = -3. Zvoľme na nej jeden bod (napr. (a, b) = (1, -3)) a pokúsme sa určiť stabilitu nulového riešenia. (Vyskúšajte použiť numerické riešenie!) Dostávame systém

$$\dot{x}_1 = x_1 + x_2 + x_2^2, \dot{x}_2 = -3(x_1 + x_2) - x_2^2$$

Ten by bol oveľa jednoduchší, keby bolo $x_1 = -x_2$. A máme šťastie! Skutočne jednou z tried riešení systému je $x_1(t) = -1/(t+c) = -x_2(t)$, kde *c* je konštanta. Ak by sme uvažovali c > 0, tak potom pri narastajúcich hodnotách *t* riešenie konverguje k bodu **0**. Ak však zvolíme $c = -10^5$, pri t = 0 bude $\mathbf{x}(0) = (10^{-5}, -10^{-5})^T$, ale pri rastúcom *t* sa bude riešenie od bodu **0** vzďaľovat! Je zrejmé, že vhodnou voľbou *c* sa môžeme dostať do ľubovoľného okolia bodu **0** v čase t = 0 a potom sa od neho vzďaľovať. To svedčí o nestabilite nulového riešenia.

8. Riešením podmienkových rovníc stacionárneho bodu sa presvedčíme, že jediné stacionárne riešenie je nulové riešenie. V metóde prvého priblíženia dostávame charakteristický polynóm Jacobiovej matice rovný $\lambda^2 + 5 \lambda$, pre ktorý je $\lambda_1 = -5$ a $\lambda_2 = 0$. Teda na základe Ljapunovovej vety rozhodnúť nevieme. Dokážeme, že funkcia $V(\mathbf{x}) = 6 x_1^2 + x_2^2$ je silná Ljapunovova funkcia a teda nulové riešenie je asymptoticky stabilné:

$$\dot{V}[\mathbf{x}(t)] = 12x_1[-3x_1 + x_2 - x_1^3] + 2x_2[6x_1 - 2x_2] = -12x_1^4 - 4[3x_1 - x_2]^2 \le 0.$$

9. a) nie je možné; b) nie je možné; c) $\dot{x} = (x^2 - 1)^2$; d) $\dot{x} = x - x^2$.

10. Jediný stacionárny bod x = 1, ktorý je repeler (bod x = -1 nepatrí do stavového priestoru rovnice).

11. I. trieda: a), g) – nemajú stacionárne body a f' > 0; II. trieda: b), e), h), i) – majú jeden stacionárny bod, ktorý je šunt; III. trieda: c), f) – majú nekonečne veľa stacionárnych bodov, striedajúcich sa repelerov a atraktorov; IV. trieda: d) – má nekonečne veľa stacionárnych bodov, šuntov.

12. Vzhľadom na tvar matice bude $\dot{x}_2 = 0$ a teda hodnota $x_2(t) \equiv x_2(t_0)$, ostávame stále v rovnakej vzdialenosti od osi x_1 . Keďže $\dot{x}_1 = x_2$ budú v hornej polrovine ($x_2 > 0$) hodnoty x_1 narastať, bude na tejto časti orientácia trajektórií zľava napravo; v dolnej polrovine budú hodnoty x_1 klesať a na tejto časti bude orientácia trajektórií sprava naľavo.

13. Urob si sám. Metóda Rungeho-Kuttova je uvedená v programovej prílohe.

14. Vzhľadom na časovú náročnosť zaradenia portrétov do učebnej pomôcky, musíte si poradiť sami (pozri Rungeho-Kuttovu metódu v programovej prílohe).

Domovská stránka
Titulná strana
Obsah
•• ••
•
Strana 325 z 348
Späť
Celá strana
Zatvoriť
Koniec

15. Riešenie je podobné ako v riešenom príklade. Prvá rovnica má však dva stacionárne body $\rho = 0$ a $\rho = 1$. Jej fázový portrét vyzerá nasledujúcim spôsobom:

Teda bod **0** bude atraktorom, jednotková kružnica bude nestabilným limitným cyklom — repelerom, teda od nej sa budú trajektórie odvíjať smerom von alebo dnu. Sústava bude mať tvar:

$$\dot{x}_1 = x_1 \sqrt{x_1^2 + x_2^2} - x_1 - x_2, \\ \dot{x}_2 = x_2 \sqrt{x_1^2 + x_2^2} + x_1 - x_2.$$

16. Návod: stačí napísať v polárnych súradniciach rovnicu pre ρ takú, aby mala dva (tri, ...) kladné singulárne body.

17. Prezradíme len výsledné rovnice, ku ktorým by ste sa po substitúcii $x_1 = \rho \cos \varphi$, $x_2 = \rho \sin \varphi$ mali dopracovať: $\dot{\rho} = \rho(\alpha - \sigma \rho^2)$ a $\dot{\varphi} = -\alpha - \sigma \rho^2$. Interpretujte tieto rovnice.

18. Uzavreté trajektórie predstavujú periodické kmity s výkyvmi z intervalu $(-\pi, \pi)$, teda nedosahujúcimi hornú stacionárnu polohu. Neuzavreté trajektórie odlišné od separatrix predstavujú predstavujú úplnú rotáciu kyvadla. Separatrixy sú vlastne tiež neuzavreté trajektórie, ktoré pozostávajú z nestabilných stacionárnych bodov, odpovedajúcich hornej úvrati a z kriviek, ktoré predstavujú trajektórie kyvadla, ktoré sa odchýlilo z hornej nestabilnej rovnovážnej polohy *s nulovou rýchlosťou* a *za nekonečný čas* (pozri (CSONTÓ, 1980)) sa dostane znovu do hornej úvrate.

19. Urob si sám. Odporúčame štartovať numerický výpočet z rôznych bodov na kladnej poloosi x_2 : napr. v bodoch (0, 0.2), (0, 0.7), (0, 1.5), atď.

20. Zvoľte si nejaké parametre a experimentujte so začiatočnými hodnotami. Napríklad Van der Polova rovnica pre hodnoty a = 1, b = 1 a c = 1, pri dvoch rôznych začiatočných vektoroch $(0, 0.1)^T$ a $(0, 5)^T$ má fázové trajektórie znázornené na obrázku 59. Svedčia o existencii limitného cyklu.

21. Urob si sám. Pridajte ku rovniciam na pravú stranu periodickú zložku, modelujúcu vonkajšie fluktuácie, podobne ako sme to urobili v prípade Duffingovej rovnice.

22. $\dot{V}(x_1, x_2) = -2(2x_1^2 + x_2^2)(x_1^2 + x_2^2)^2 \le 0.$

23. Pri $\mu = 0$ chýbajú nelineárne členy, preto je bod **0** *stred*.

24. Všimnime si, že jedna vlastná hodnota matice je vždy rovná -1 < 0. Druhá je rovná μ . Podľa tabuľky 1 vidíme, že pri $\mu < 0$ bude bod **0** stabilný uzol a pri $\mu > 0$ to bude sedlo. Pri $\mu = 0$ znázornite fázový portrét samostatne.

25. To snáď zvládnete sami!

Domovská stránka
Titulná strana
Obsah
•• ••
• •
Strana 327 z 348
Späť
Celá strana
Zatvoriť
Koniec

26. Najprv sporom dokážeme, že prázdna množina je otvorená aj uzavretá. Predpokladme, že prázdna množina nie je otvorená. Potom existuje taký jej bod, ktorý nie je obsiahnutý v žiadnej otvorenej podmnožine *X*. Je zrejmé, že taký bod neexistuje (prečo?) a to je spor. Teda prázdna množina je *otvorená*. Predpokladajme teraz, že prázdna množina nie je uzavretá. Teda existuje taká konvergentná postupnosť jej bodov, ktorej limita do nej nepatrí. Ale žiadna postupnosť podov prázdej množiny neexistuje (prečo?) a to je spor. Teda prázdna množina je *uzavretá*.

Ďalej ukážme, že celá množina X je otvorená a uzavretá zároveň. Vezmime ľubovoľný prvok x množiny X. Keďže $G_1(x) \subseteq X$ (overte to!), množina X spolu so svojim ľubovoľným prvkom obsahuje aj *nejaké* jeho otvorené okolie. Preto je množina X *otvorená*. Ďalej vezmime ľubovoľnú konvergentnú postupnosť prvkov X. Jej limita na základe definície konvergencie patrí do X a teda X je **uzavretá**.

27. Overte, že riešením sú aj dve nasledujúce lineárne zobrazenia, reprezentované maticami A_1 a A_2 . Vysvetlite ich geometrický zmysel.

$$A_1 = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}, \qquad A_2 = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$$

28. Rotácia o uhol α proti smeru hodinových ručičiek je v \mathbb{R}^2 reprezentovaná maticou $R(\alpha) = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$. Vezmime dva vektory $\mathbf{x}_1 = (1,0)^T$ a $\mathbf{x}_2 = (1,1)^T$. Overte, že platí $d_1(\mathbf{x}_2, \mathbf{x}_1) = d_{\infty}(\mathbf{x}_2, \mathbf{x}_1) = 1$. Pre obrazy $\mathbf{y}_1 = \mathbf{R} \mathbf{x}_1 = (\cos \alpha, \sin \alpha)^T$, $\mathbf{y}_2 = \mathbf{R} \mathbf{x}_2 = (\cos \alpha - \sin \alpha, \cos \alpha - \sin \alpha)^T$ platí $d_1(\mathbf{y}_2, \mathbf{y}_1) = |\sin \alpha| + |\cos \alpha|$ a $d_{\infty}(\mathbf{y}_2, \mathbf{y}_1) = \max(|\sin \alpha|, |\cos \alpha|)$. Je zrejmé, že tieto hodnoty sú rôzne od 1 s výnimkou uhlov, ktoré sú násobkami $\pi/2$.

Domovská stránka
Titulná strana
Obsah
•• ••
•
Strana 329 z 348
Späť
Celá strana
Zatvoriť
Koniec

29. Dokážeme najprv, že $x_2^* > 1/2$: $x_2^* = 2r/(1+2r) = 1 - 1/(1+2r) > 1 - 1/(1+1) = 1/2$. Ďalej platí: $\Delta(x_2^*) = r(1-2|1/2-x_2^*|) = r(1+2(1/2-x_2^*)) = r(2-2x_2^*)) = 2r(1/(1+2r)) = x_2^*$.

30. Overte, že $x^* = 2r/(1+4r^2)$ je hľadaný pevný bod, pričom platí $\Delta(x^*) = 4r^2/(1+4r^2) > 1/2$.

31. Všimnite si, že pre hodnotu r^* platí: $\Delta^{[3]}(1/2) = 1/2$. Zostavte túto rovnicu $(r^{*3} - r^{*2} + 1/8 = 0)$ a vyriešte ju.

32. Stačí si všimnúť, že všetky úseky grafov funkcií $\Delta(x)$, $\Delta^{[2]}(x)$ a $\Delta^{[3]}(x)$ sú strmšie ako os y = x a teda všetky body sú nestabilné repelery.

33.
$$f^{[2]'''}(x) = f'''(f(x)) \cdot (f'(x))^3 + 3 \cdot f'(x) \cdot f''(x) \cdot f''(f(x)) + f'(f(x)) \cdot f'''(x)$$
 a preto

$$\mathcal{S}f^{[2]} = \left\{ \frac{f'''(f(x))}{f'(f(x))} - \frac{3}{2} \left[\frac{f''(f(x))}{f'(f(x))} \right]^2 \right\} \cdot \left(f'(x)\right)^2 + \left\{ \frac{f'''(x)}{f'(x)} - \frac{3}{2} \left[\frac{f''(x)}{f'(x)} \right]^2 \right\}$$

Zvyšok dôkazu je zrejmý.

Domovská stránka
Titulná strana
Obsah

• •
Strana 330 z 348
Späť
Celá strana
Zatvoriť
Koniec

34. Uvažujme 4 stabilné pevné body $f^{[4]}$, ktoré vzniknú po bifurkácii a označme ich $x_1^*-x_4^*$. Ďalej označme $f(x_1^*) = x_{11}^*$. Platí

$$f^{[4]}(x_{11}^*) = f^{[4]}(f(x_1^*)) = f(f^{[4]}(x_1^*)) = f(x_1^*) = x_{11}^*$$

Teda x_{11}^* je jeden zo štyroch uvažovaných bodov. Nemôže to byť bol x_1^* , pretože to by bol zároveň pevným bodom zobrazenia f, ktorý je však už pre túto hodnotu r nestabilný. Označme teda $x_2^* = x_{11}^*$. Ďalej uvažujme bod $x_{21}^* = f(x_2^*)$. Aj pre neho sa dá ukázať, že je jeden zo štvorice uvažovaných bodov. Avšak nemôže to byť bod x_1^* , pretože by tak vznikol cyklus s periódou 2. Lenže pre túto hodnotu r už taký cyklus nemôže byť stabilný, čo je v rozpore so stabilitou uvažovaných bodov. Samozrejme to nemôže byť ani samotný bod x_2^* . Označme teda $x_3^* = x_{21}^*$ a uvažujme bod $x_{31}^* = f(x_3^*)$. Rovnako ako predtým môžeme konštatovať, že je to pevný bod zobrazenia $f^{[4]}$. Nemôže to byť x_3^* ani x_2^* (vznikol by cyklus s periódou 2). Ak pripustíme, že to bude bod x_1^* , ukáže sa, že v tom prípade body x_1^* , x_2^* a x_3^* vytvoria cyklus s periódou 3. Ale to je v rozpore s tým, že jeden z týchto troch bodov by mal byť $f(x_4^*)$. Preto musí byť $x_{31}^* = x_4^*$. Nakoniec je zrejmé, že $f(x_4^*) = f^{[2]}(x_3^*) = f^{[3]}(x_2^*) = f^{[4]}(x_1^*) = x_1^*$, čo dokazuje vytvorenie cyklu $x_1^* - x_2^* - x_3^* - x_4^* - x_1^*$ s periódou 4.

35. V Cantorovej množine môžeme poskladať množinu z dvoch častí, trojnásobne zmenšených. Preto

$$D = \frac{\log N}{\log 1/r} = \frac{\log 2}{\log 3} \approx 0.6309$$

Hoci je dimenzia samozrejme menšia ako 1, do nuly to má ešte dosť ďaleko.

Domovská stránka
Titulná strana
Obsah
< →
Strana 331 z 348
Späť
Celá strana
Zatvoriť
Koniec

36. Vychádzame z toho, že pri zmenšení r = 1/4 bude nasledujúci predfraktál zložený z N = 4 kusov predchádzajúceho. Preto je

$$D = \frac{\log N}{\log 1/r} = \frac{\log 4}{\log 4} = 1$$

Teda výsledný fraktál bude mať dimenziu podobnosti rovnú 1.

37. Žiaľ, neviem, ktoré pobrežie v ktorom atlase Vás zaujalo.

38. Pri zmenšení r = 1/2 bude nasledujúci predfraktál zložený z N = 3 kusov predchádzajúceho. Preto je

$$D = \frac{\log N}{\log 1/r} = \frac{\log 3}{\log 2} \approx 1.5850.$$

Teda výsledný fraktál bude mať dimenziu podobnosti rovnú približne 1.585.

Obr. 60: 3 iterácie SIF pre Sierpińskeho trojuholník

39. Sú potrebné tri kontraktívne zobrazenia podobnosti s koeficientom r = 1/2.

$$\begin{array}{rcl} T_1(x) & = & \left[\begin{array}{cc} 1/2 & 0 \\ 0 & 1/2 \end{array} \right] x + \left[\begin{array}{c} 0 \\ 0 \end{array} \right] \\ T_2(x) & = & \left[\begin{array}{cc} 1/2 & 0 \\ 0 & 1/2 \end{array} \right] x + \left[\begin{array}{c} 1/2 \\ 0 \end{array} \right] \\ T_3(x) & = & \left[\begin{array}{c} 1/2 & 0 \\ 0 & 1/2 \end{array} \right] x + \left[\begin{array}{c} 1/4 \\ \sqrt{3}/4 \end{array} \right] \end{array}$$

Zobrazenie Hutchinsona (pozri oddiel 4.2.3) definujeme teraz ako

$$\mathbf{T}(E) = \mathbf{T}_1(E) \cup \mathbf{T}_2(E) \cup \mathbf{T}_3(E), \qquad E \in \mathcal{K},$$

kde \mathcal{K} je množina kompaktov na \mathbb{R}^2 . Prvé tri iterácie SIF sú znázornené na obrázku 60.

Domovská stránka
Titulná strana
Obsah
↔ →
• •
Strana 333 z 348
Späť
Celá strana
Zatvoriť
Koniec

40. Nech $\rho(x) = c$, ked' $x \in \langle a, b \rangle$. Platí

$$1 = P(x \in \mathbb{R}) = \int_{-\infty}^{\infty} \rho(x) \, \mathrm{d}x = \int_{a}^{b} \rho(x) \, \mathrm{d}x = \int_{a}^{b} c \, \mathrm{d}x = c(b-a),$$

odkiaľ c = 1/(b - a). Ďalej

$$\int_{a}^{b} x \frac{1}{b-a} \, \mathrm{d}x = 1/(b-a) \left[\frac{x^{2}}{2}\right]_{a}^{b} = \frac{b^{2}-a^{2}}{2(b-a)} = \frac{a+b}{2}$$

41. Hladké čiary na obrázku 61 zhora dolu odpovedajú mocninovým signálom.

42. Vidíme, že autokorelačné funkcie náhodného, resp. chaotického signálu vyzerajú ako šum, v prípade mocninových funkcií sú funkcie, zobrazené na obrázku 62, hladké a monotónne klesajúce.

43.
$$S = 0 \cdot 1 \cdot 010101010101$$
 a teda $c(S) = 2 + 1 = 3$

44. $S = 0 \cdot 001 \cdot 10 \cdot 100 \cdot 1000 \cdot 101$ a teda c(S) = 5 + 1 = 6.

45. "Urob si sám", obrázok závislosti *LZ*-zložitosti od parametra v prípade logistického zobrazenia nájdete v knihe (RASBAND, 1997).

Domovská stránka
Titulná strana
Obsah
•• ••
• •
Strana 334 z 348
Späť
Celá strana
Zatvoriť

Koniec

46. Na zobrazenie 1000 iterácií v Matlabe napíšeme: figure(1); axis([0 1 0 1]); x=sqrt(3/2); y=sqrt(2)/3; plot(x,y,'ro'); for i=1:1000, x=mod(x+y,1); y=mod(x+2*y,1); plot(x,y,'*'); end;. Na obrázku 63 je znázornený výsledok. Vzhľadom na aritmetiku počítača sa zobrazenie dostalo po 106 krokoch do bodu (0,0), ktorý je stacionárny. Pri počítaní s presnými číslami by sa proces nezastavil.

47. Keďže platí $\frac{d\langle x \rangle}{dt} = \frac{\langle p \rangle}{m} = \frac{p_0 e^{-\Gamma t}}{m}$, integrovaním dostávame $\langle x \rangle = C - \frac{p_0 e^{-\Gamma t}}{m\Gamma}$. Dosadením t = 0 do riešenia určíme konštantu *C* a získame výsledný tvar závislosti strednej hodnoty $\langle x \rangle$ od času.

48. $\sum_{n=0}^{\infty} s^n \lambda P(n-1,t) = |P(-1,t) = 0| = \sum_{n=1}^{\infty} s^n \lambda P(n-1,t) = s \lambda \sum_{n=1}^{\infty} s^{n-1} P(n-1,t) = s \lambda \sum_{n=0}^{\infty} s^n P(n,t) = s \lambda G(s,t)$ a teda $\frac{\partial G}{\partial t} = \sum_{n=0}^{\infty} s^n \frac{\partial P(n,t)}{\partial t} = \sum_{n=0}^{\infty} s^n \lambda [P(n-1,t) - P(n,t)] = \lambda (s-1)G(s,t)$ na základe rovnice (137) časti 8.2.2.

49. Keďže
$$G(s,0) = 1$$
, platí $G(s,t) = e^{\lambda (s-1)t} = \sum_{n=0}^{\infty} \frac{(\lambda (s-1)t)^n}{n!}$.

Domovská stránka
Titulná strana
Obsah
•• ••
< >
Strana 335 z 348
Späť
Celá strana
Zatvoriť
Koniec

Koniec

Obr. 61: Výkonové spektrá a ich logaritmy pre náhodný a mocninové signály

Literatúra

- Abarbanel, H D. I. 1996. *Analysis of Observed Chaotic Data*. Springer, New York, 1996. 231
- Akritas, P. Akishin, P. G. Antoniou, I. Bonushkina, A. Yu. Drossinos, I. Ivanov, V. V. Kalinovsky, Yu. L. Korenkov, V. V. Zrelov, P. V. 2002. Nonlinear Analysis of Network Traffic. Chaos Solitons & Fractals, Vol. 14, 4. 595–606. 231
- Antoniou, I. Ivanov, Vi. V. Ivanov, Va. V. Zrelov, P. V. 2003. Wavelet filtering of network traffic measurements. Physica A: Statistical Mechanics and its Applications, Vol. 324, Issues 3–4, 15 June 2003, 733–753. 231
- Arnol'd, V.I. 1978. Dopolnitel'nyje glavy teorii obyknovennych differencial'nych uravnenij. Nauka, Moskva, 304 s. 18, 55, 253
- Arnol'd, V. I. 1978. *Matematičeskie metody klassičeskoj mechaniki*. Nauka, Moskva, 1978, 432 s. 56
- Arrowsmith, D. K. Place, C. M. 1982. Ordinary Differential Equations. A Qualitative Approach with Applications. Westfield College, University of London, Chapman and Hall, London, (ruský preklad 1986). 44, 48, 60, 62, 69, 95, 97

Barnsley, M. 1988. Fractals Everywhere. Academic Press, Boston. 119, 192

- Bendat, J. S. Piersol, A. G. 1980. Engineering Applications of Correlation and Spectral Analysis. John Wiley & Sons, New York, 1980 (ruský preklad 1983), 312 s. 231
- Brunovský, P. Medved', M. 1982. *Bifurkácie negradientných systémov.* Pokroky matematiky, fyziky a astronomie, JSMF, **27**, 2, 74–93. **81**
- Bučko, M. Buša, J. Schrötter, Š. 2001. *Lineárna algebra*. Košice, ELFA, ISBN 80-89066-09-7, 168 s. 22
- Bukovský, L. 1998. *Introduction to Fractal Geometry*. CEEPUS Network Number H–66 Lectures, October 27 November 11, 23 s. 167, 172, 176, 180
- Crownover, R. M. 1995. *Introduction to Fractals and Chaos*, Jones and Bartlett Publishers, Boston-London, 350 s. (ruský preklad 1999, ISBN 5-901095-03-0). 98, 109, 110, 118, 119, 121, 122, 154, 160, 168, 176, 181, 182, 183, 188, 192, 194, 198, 199
- Csontó, J. 1980. *Teória automatického riadenia I (nelineárne sústavy)*. Alfa, Bratislava, 242 s. 38, 44, 47, 50, 53, 56, 60, 62, 69, 70, 326

Csontó, J. – Palko, M. 2002. Umelý život. Elfa, Košice, 180 s. 14, 187, 189

- Čandík, M. 2000. Fraktálové kódovanie obrazov. Dizertačná práca, FEI TU, Košice, 85 s. 192
- Doboš, J. Škerlík, A. 1998. *Zbierka úloh z vyššej matematiky III.* ELFA, Košice, ISBN 80-88786-74-6, 79 s. 37, 43, 48, 49, 50

Domovská stránka
Titulná strana
Obsah
•• ••
• •
Strana 340 z 348
Späť
Celá strana
Zatvoriť
Koniec

- Drutarovský, M. Bača, M. Galajda, P. 2004. *Chaos Based True Random Generator.* Zaslané do tlače Cypress MicroSystems, Inc., 16 s. 127
- Drutarovský, M. Galajda, P. Fisher, V. Bača, M. 2004. Chaos-Based True Random Number Generator Embedded in Mixed Signal Reconfigurable Hardware. Zaslané do: Workshop on Cryptographic Hardware and Embedded Systems (CHES 2004) Cambridge (Boston), USA, August 11–13, 2004, 13 s. 127
- Dvořák, I. Šiška, J. 1991. *Teorie deterministického chaosu a některé její aplikace*. 1. a 2. časť. Pokroky matematiky, fyziky a astronomie, JSMF, **36**, 2, 73–91 a 3, 155–171. **16**, **76**, **239**, **244**, **245**
- Einstein, A. 1905. Annalen der Physik (Leipzig), 14, 549. 258
- Feder, J. 1998. *Fractals.* Plenum Press, New York and London, ISBN 0-306-42851-2 (ruský preklad 1991, ISBN 5-03-001712-7). 160, 168, 178
- Gavalcová, T. 1999. *Entrance to Chaos: the Quadratic Iterator*. In: Proceedings of International Scientific Conference on Mathematics, Herl'any, Oct. 21–23, 183–187. 13, 123
- Gardiner, C. W. 1985. *Handbook of Stochastic Methods*. Springer-Verlag, Berlin Heidelberg. 258, 292
- Grassberger, P. Procaccia, I. 1983. *Estimating the Kolomogorov Entropy from Chaotic Signal*. Physical Reviews A 28, 2591. 239, 246

Domovská stránka
Titulná strana
Obsah
•• >>
 ▲
Strana 341 z 348
Späť
Celá strana
Zatvoriť
Koniec

- Grygar, J. 1991. *Chaos ve sluneční soustavě*. Pokroky matematiky, fyziky a astronomie, JSMF, **36** 3, 141–148. **16**, **76**
- Heinrichs, G. 1993. *Chaos. Einführung in eine neue physikalische Theorie.* Aulis-Verl. Deubner, ISBN 3-7614-1469-2, 145 s. 52, 77, 147, 154, 157, 206
- Hénon, M. 1976. A Two Dimensional Mapping with a Strange Attractor. Commun. Math. Phys. 50, 69. 243
- Hogeweg, P. Hesper, B. 1974. A Model Study on Biomorphological Description. Pattern Recognition, 6, 165–197. 187
- Horák, J. Krlín, L. Raidl, A. 2003. *Deterministický chaos a jeho fyzikální aplikace*. Academia, Praha, ISBN 80-200-0910-8, 438 s. 13
- Hutchinson, J. ,E. 1981. *Fractals and Selfsimilarity*. Indiana University Mathematics Journal, Vol. 30, 5, 713–747. 119
- Iooss, G. Joseph, D. D. 1980. *Elementary Stability and Bifurcation Theory*. Springer-Verlag, New York (ruský preklad 1983). 86, 92, 97
- Kahn, P. B. 1989. *Mathematical Methods for Scientists & Engineers. Linear and Nonlinear Systems.* Hohn Wiley & Sons, Inc., New York, 470 s. 68, 97
- Van Kampen, N. G. 1984. Stochastic Processes in Phisics and Chemistry. North-Holland, Amsterdam. 258

Domovská stránka
Titulná strana
Obsah
•• >>
Strana 342 z 348
Späť
Celá strana
Zatvoriť
Koniec

Klimontovich, Yu. L. 1991. *Turbulent Motion and the Structure of Chaos: A New Approach to the Statistical Theory of Open Systems*. Fundamental Theories of Physics, Vol 42, Kluwer Academic Publishers, ISBN 0792311140, 420 s. 292

Kuznecov, B. G. 1963. Einstein. Vydavateľstvo AV ZSSR, 414 s. 257

Kvasnikov, I. A. 1987. Termodinamics and Statistical Physics: Theory of Non-Equilibrium Systems. Moscow University. 257, 258

Langevin, P. 1908. Coruptes. Rendues, 146, 530. 261

- Levický, D. Foriš, P. 2002. Technika fraktálnych vodoznakov vo fraktálovom kódovaní statických obrazov. Slaboproudý obzor, ISSN 0037-668X, ročník 59, 4, 13–18. 192
- Levický, D. Foriš, P. 2003. Some Modifications of Fractal Image Coding and Digital Watermarking. in: Proceedings of the IEEE International Conference on Industrial Technology, Maribor, Slovenia, December 10–12, 946–950. 192
- Lorenz, K. 2000. *Osm smrtelných hříchů*. Academia, ISBN 80-200-0842-X, 95 s. (český preklad nemeckého originálu).
- Madarász, L. 2004. *Informačné technológie a ich aplikácie v zložitých systémoch*. University Press elfa, TU Košice, ISBN 80-89066-75-5, 368 s. 80

- Mandelbrot, B. B. 1982. *The Fractal Geometry of Nature*. Freeman, San Francisco. 17, 168, 179
- May, R. M. 1976. *Simple Mathematical Models with Very Complicated Dynamics*. Nature, v. 261, 459–467. 123
- Medved', M. 1988. Dynamické systémy. VEDA, Bratislava, 256 s. 15, 81
- Myslík, A. 2003. "*Psychowalkman" v PC*. Praktická elektronika, A Radio, 3, 33–36. 80
- Peitgen, H.-O. Richter, P. H. 1986. *The Beauty of Fractals. Images of Complex Dynamical Systems*. Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, ISBN 3-540-15851-0 175 s. (ruský preklad 1993, ISBN 5-03-001296-6). 98, 134, 154, 159, 194, 195, 199, 200, 202
- Pekárek, L. Kolařík, P. 1991. *Deterministické fyzikální soustavy s chaotickým chováním.* Pokroky matematiky, fyziky a astronomie, JSMF, **36**, 6, 319–335. 74
- E. Peters Peters, E. E. 1996. Chaos and Order in the Capital Markets: A New View of Cycles, Prices, and Market Volatility. A Wiley Finance Edition, 274 s. 258
- Pirč, V. Buša, J. 2002. Numerické metódy. FEI TU ELFA, Košice, ISBN 80-89066-25-9, 131 s. 115, 293

Domovská stránka
Titulná strana
Obsah
•• ••
Strana 344 z 348
Späť
Celá strana
Zatvoriť
Koniec

- Pirč, V. Haščák, A. Ostertagová, E. 2000. *Vybrané kapitoly z matematiky*, ELFA, Košice, 2000, ISBN 80-88964-24-5, 100 s. 20, 22, 48
- Poincaré, H. 1908. *Veda a metóda*. V knihe *O nauke*. Moskva, Nauka, 1983, ISBN 5-02-014328-6, 736 s. 12
- Pontrjagin, L. S. 1974. *Obyknovennyje differencial'nyje uravnenija*. Moskva, Nauka, 332 s. 20, 28
- Prigogine, I. Stengers, I. 1984. Order out of Chaos. (pozri http://www. mdpi.org/entropy/entropyweb/prigogine.htm) (ruský preklad 1986, 2000 ISBN 5-8360-0106-5). 81
- Rasband, S. N. 1997 *Chaotic Dynamics of Nonlinear Systems*. Wiley-Interscience, ISBN 0471184349, 240 s. 218, 219, 220, 230, 235, 250, 252, 334
- Rice, S. O. 1944. Bell Syst. Tech. J., 23, p. 282. 276
- Rice, S. O. 1945. Bell Syst. Tech. J., 24, p. 46. 276
- Schuster, H. G. 1984. Deterministic Chaos. An Introduction. Physik-Verlag, Weinheim, ISBN 3-87664-101-2, 240 s. (ruský preklad 1988, ISBN 3-87664-101-2). 12, 15, 126, 133, 154, 157, 226, 227, 228, 229, 230, 244, 245, 253, 254
- Schottky, W. 1918. Annalen der Physik (Leipzig), 57, 541. 276

Smith, A. R. 1984. *Plants, Fractals and Formal Languages.* Computer Graphics, **18** (July 1984), 1–10. **188**

Von Smoluchowski, M. 1906. Annalen der Physik (Leipzig), 21, 756. 284

Von Smoluchowski, M. 1915. Phys. Zeitschrift, 16, 321. 284

Von Smoluchowski, M. 1916. Phys. Zeitschrift, 17, 557. 284

- Takens, F. 1980. *Detecting Strange Attractors in Turbulence*. In: Dynamical Systems and Turbulence, Lecture Notes in Mathematics **898**, s. 366. 239
- Takens, F. 1983. *Invariants Related to Dimension and Entropy*. Atas do 13. Col. brasilien de Matematicas, Rio de Janeiro. 239

Williams, J. P. 1997. Chaos Theory Tamed. 499 s. 239

Zvára, K. — Štěpán, J. 2002. *Pravděpodobnost a matematická statistika*, VEDA – MATFYZPRESS, Bratislava, ISBN 80-2240736-4, 230 s. 221, 222

Domovská stránka
Titulná strana
Obsah
• •
Strana 346 z 348
Späť
Celá strana
Zatvoriť
Koniec

NÁZOV: Chaos. Úvod do problematiky AUTORI: Ján Buša a Michal Hnatič POČET STRÁN: 345 VYDANIE: druhé, opravené a doplnené SADZBA: elektronická, programom pdfT_EX.

Vyšlo vo vydavateľstve Mercury-Smékal, s r. o.

ISBN 80-89061-94-X

ISBN 80-89061-94-X